期刊文献+

基于CDbw和人工蜂群优化的密度峰值聚类算法 被引量:3

Density Peaks Clustering Algorithm Based on CDbw and ABC Optimization
在线阅读 下载PDF
导出
摘要 针对密度峰值聚类(DPC)算法存在的dc值难选择及近邻原则聚合操作在低密度区效果不佳的问题,提出一种基于人工蜂群与CDbw聚类指标优化的密度峰值聚类(BeeDPC)算法,以实现类簇间数据点的自动识别和合理聚类,并解决DPC对类簇间数据点类别识别上存在的缺陷.实验结果表明,BeeDPC算法具有自动识别并合理聚类类簇间数据点、自动识别类簇中心点和类簇数量及自动处理任意分布数据集的优势. Aiming at the problem that value of d c was difficult to select and the poor effect of neighborhood principle aggregation operation in low density area,we proposed a density peaks clustering(DPC)algorithmbased on artificial bee colony and CDbw clustering index optimization,which realized automatic identification and reasonable clustering of data points betweenclusters,and solved the defect of DPC in class identification of data points between clusters.Experiment results show that the BeeDPC algorithm has advantagesof automatic identification and reasonable clustering of data points between clusters,automatic identification of cluster centers and the number of clusters and dealing with arbitrary distributed data sets.
作者 姜建华 吴迪 郝德浩 王丽敏 张永刚 李克勤 JIANG Jianhua;WU Di;HAO Dehao;WANG Limin;ZHANG Yonggang;LI Keqin(Jilin Province Key Laboratory of Fintech,Department of Data Science, Jilin University of Finance and Economics,Changchun 130117,China;Symbol Computation and Knowledge Engineering of Ministry of Education,Jilin University,Changchun 130012,China;Department of Computer Science,State University of New York,New York 12561, USA)
出处 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2018年第6期1469-1475,共7页 Journal of Jilin University:Science Edition
基金 吉林省自然科学基金(批准号:20180101044JC) 吉林省社会科学规划基金(批准号:2018B79) 符号计算与知识工程教育部重点实验室项目和吉林财经大学科研项目(批准号:2018Z05).
关键词 聚类分析 CDbw评价指标 密度峰值 密度聚类 人工蜂群算法 cluster analysis CDbw evaluation index density peak density clustering artificial bee colony(ABC)algorithm
作者简介 姜建华(1979—),男,汉族,博士,副教授,从事数据挖掘、优化算法和电子商务的研究,E-mail:jjh@jlufe.edu.cn.;通信作者:李克勤(1963-),男,汉族,博士,教授,从事数据挖掘和高性能计算的研究,E-mail:lik@newpaltz.edu.
  • 相关文献

参考文献1

二级参考文献17

  • 1Frey B J, Dueck D. Clustering by Passing Messages between Data Points [J]. Science, 2007, 315:972-976.
  • 2Yang C, Bruzzone L, Guan R C, et al. Incremental and Decremental Affinity Propagation for Semi supervised Clustering in Multispectral Images [J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(3) : 1666 -1679.
  • 3Xu B, Hu R, Guo P. Combining Affinity Propagation with Supervised Dictionary Learning for Image Classification [J]. Neural Computing and Applications, 2(513, 22(7/8): 1301-1308.
  • 4Saracli S. Performance of Rand's Cstatistics in Clustering Analysis: An Application to Clustering the Regions of Turkey [J]. Journal of Inequalities and Applications, 2013(1) : 1-9.
  • 5Fujiwara Y, Irie G, Kitahara T. Fast Algorithm for Affinity Propagation [C]//Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence. Menlo Park, California: AAAI Press, 2011: 2238 2243.
  • 6Givoni I, Chung C, Frey B J. Hierarchical Affinity Propagation [J/OL]. 2012. http://arxiv, org/ftp/arxiv/ papers/1202/1202. 3722. pdf.
  • 7Capozzoli A, Curcio C, Liseno A, et al. Multi frequency Planar Near Field Scanning by Means of Singular Value Decomposition (SVD) Optimization [J]. IEEE Antennas Amp, 2011, 53(6): 212- 221.
  • 8Ajit R, Anand R, Arunava B, et al. Image Denoising Using the Higher Order Singular Value Decomposition [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(4): 849 -862.
  • 9Vannieuwenhoven N, Vandebril R, Meerbergen K, et al. A New Truncation Strategy for the Higher-Order Singular Value Decomposition [J]. SIAM Journal on Scientific Computing, 2012, 34(2) : A1027-A1052.
  • 10Makbol N M, Khoo B E. Robust Blind Image Watermarking Scheme Based on Redundant Discrete Wavelet Transform and Singular Value Decomposition [J]. AEU: International Journal of Electronics and Communications, 2013, 67(2): 102- 112.

共引文献4

同被引文献16

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部