摘要
根据非线性动力学理论,以一类新的单时滞Chen系统为分析对象,针对其平衡点的稳定性和Hopf分岔参数等问题进行研究.根据Routh-Hurwitz判据分析了其平衡点的稳定性,通过计算得到单时滞Chen系统特征根的分布,进一步分析得出系统在零平衡点附近是渐进稳定的.结合Hopf分岔理论,运用特征根的分布结果,确定出系统发生Hopf分岔的时滞参数,并给出Hopf分岔条件.通过多组实验仿真验证了理论分析的正确性.
Based on the theory of nonlinear dynamics,this paper studies the stability of equilibrium and Hopf bifurcation parameters of a class of new single time delay Chen system.According to routh-hurwitz criterion,the stability of the equilibrium point is analyzed,and the distribution of the system characteristic root is obtained by calculation,and the asymptotic stability of the system near the zero equilibrium point is further analyzed.Based on the hopf bifurcation theory,the time-delay parameters of hopf bifurcation are determined by using the distribution results of the characteristic roots,and the hopf bifurcation conditions are given.The correctness of the theoretical analysis was veried by several experiments.
作者
何宏骏
崔岩
孙观
He Hongjun;Cui Yan;Sun Guan(Department of of Mechanical Engineering,Shanghai University of Engineering Science,Shanghai 201620,China)
出处
《纯粹数学与应用数学》
2018年第3期264-271,共8页
Pure and Applied Mathematics
基金
国家自然科学基金青年科学基金(11604205)
作者简介
何宏骏(1994-),硕士生,研究方向:混沌理论.;通信作者:崔岩(1980-),博士,副教授,研究方向:混沌理论.