摘要
针对运输网络为多重图的双目标带时间窗车辆路径问题设计了蚁群算法.首先,建立了多重图的双目标带时间窗车辆路径问题的数学模型,提出了针对该问题解的搜索空间构建方法,定义了一种综合考虑各优化目标、时间窗和信息素等启发信息的状态转移概率公式.为了对比说明该算法的有效性,同时设计基于NSGA-Ⅱ的多目标遗传算法.针对本文算例,对蚁群算法中的各参数进行了敏感性分析,根据分析结果设定算法参数,获得了算例的Pareto最优路径集,同时与NSGA-Ⅱ算法及相关文献算法针对运行时间、收敛性和群体多样性进行比较.结果显示,本文设计的蚁群算法在这3个指标上均明显优于NSGA-Ⅱ算法;在相同蚂蚁数量情况下,本文的算法在收敛性和群体多样性方面优于相关文献算法.
An ant colony algorithm is designed for the vehicle routing problem with time windows on multigraph.A mathematical bi-objectives optimization model of vehicle routing problem with time windows on multigraph is established firstly,and a search space construction method for the solution of the problem is proposed.Then,a state transition probability formula that combines the heuristic information about optimization objectives,time windows,pheromones is defined.In order to illustrate the effectiveness of the algorithm by comparison,a multi-objective genetic algorithm based on NSGA-II is designed at the same time.In the example,the sensitivity of each parameter in the ant colony algorithm is analyzed.According to the analysis results,the algorithm parameters are set up,and the Pareto-optimal path set of the example is obtained.The CPU time,convergence and population diversity are compared with the NSGA-II algorithm and existing ant colony algorithm.The comparison results show that the three indexes of the ant colony algorithm designed are more competitive than the NSGA-II algorithm,and convergence and population diversity are better than existing ant colony algorithm.
作者
柴获
何瑞春
苏江省
宋宇博
代存杰
马昌喜
CHAI Huo;HE Rui-chun;SU Jiang-sheng;SONG Yu-bo;DAI Cun-jie;MA Chang-xi(Mechatronics Technology and Research Institute,Lanzhou Jiaotong University,Lanzhou 730070,China;School of Traffic and Transportation,Lanzhou Jiaotong University,Lanzhou 730070,China)
出处
《交通运输系统工程与信息》
EI
CSCD
北大核心
2018年第4期156-162,共7页
Journal of Transportation Systems Engineering and Information Technology
基金
国家自然科学基金(61364026)
兰州交通大学校青年基金(2015026)
兰州交通大学优秀科研平台(团队)资助计划(201604)~~
关键词
交通工程
带时间窗的车辆路径问题
多目标优化
蚁群算法
NSGA-II
状态转移概率
多重图
traffic engineering
vehicle routing problem with time windows
multi-objective optimization
ant colony optimization
NSGA-II
transition probability
mutilgraph
作者简介
柴获(1982-),男,甘肃静宁人,讲师,博士生.;通信作者:何瑞春herc@mail.lzjtu.cn.