期刊文献+

基于SVM的公交人数统计方法研究 被引量:2

People counting based on SVM in bus scene
在线阅读 下载PDF
导出
摘要 为解决实际公交场景中人数统计精确度不高的问题,采用基于支持向量机(support vector machine,SVM)分类的方法对疑似目标的三维轨迹进行分析,通过提取真实目标与伪目标轨迹的特征信息,进一步分类真实目标与伪目标。首先通过相机标定将深度相机获取的深度图像转换为三维空间中的俯视图;然后采用局部高度最大值方法提取疑似人头目标区域,并利用卡尔曼滤波跟踪得到三维轨迹;最后利用SVM训练正负样本得到强分类器,对目标轨迹进行分类,实现人数自动计数。实验表明,所提方法能够有效地提高目标轨迹分类和人数统计的精度。 To solve the precision problem of the counting system in the real bus scene,this paper proposed a method,which is based on support vector machine(SVM)classification to analyze the 3D trajectory of the suspected targets and use the feature of trajectory to classify the real target and pseudo target.Firstly,camera calibration is performed,which converts the depth image obtained by depth camera to a top-view image in 3D space.Secondly,the local height maximum method is used to extract the area of suspected head,and Kalman filter is used to track the 3D trajectory.Finally,SVM is used to train the positive and negative samples to obtain the strong classifier.It is able to classify the target trajectories and achieve the automatic counting.Experiments show that our method can effectively improve the accuracy of target trajectory classification and pedestrian statistics.
作者 张文涛 宋焕生 李莹 郑宝峰 严腾 张向清 ZHANG Wentao;SONG Huansheng;LI Ying;ZHENG Baofeng;YAN Teng;ZHANG Xiangqing(School of Information Engineering,Chang’an University,Xi’an 710064,China)
出处 《中国科技论文》 CAS 北大核心 2018年第2期143-148,共6页 China Sciencepaper
基金 国家自然科学基金资助项目(61572083) 陕西省自然科学基础研究计划资助项目(2015JZ018 2015JQ6230) 中央高校基本科研业务费专项资金资助项目(310824152009 310824163411)
关键词 SVM分类 摄像机标定 轨迹特征 卡尔曼滤波 SVM classification camera calibration trajectory characteristics Kalman filtering
作者简介 张文涛(1990-),男,硕士研究生,主要研究方向为视频图像处理;通信作者:宋焕生,教授,主要研究方向为图像处理与人工智能,hshsong@chd.edu.cn
  • 相关文献

参考文献6

二级参考文献52

  • 1侯志强,韩崇昭.视觉跟踪技术综述[J].自动化学报,2006,32(4):603-617. 被引量:257
  • 2李鹏,王军宁.摄像机标定方法简述[J].传感器世界,2007,13(3):21-24. 被引量:13
  • 3Abdel-Aziz YI, Karara HM. Direct Linear Transformation into Object Space Coordinates in Close-Range Photogrammery [C]. In: Proc. Symposium on Close-Range Photogrammetry, Urbana, University of Illinois, 1971. 1 -18.
  • 4Tsai. A versatile camera calibration technique for high accuracy 3D machine vision metrology using off-the-shelf TV cameras and lenses [J]. IEEE Journal of robotics and automation, 1987, RA 3(4) : 323 - 344.
  • 5[苏]В.В.杜宾诺夫斯基.像片校准[M].温学龄,张绪茂译,北京:测绘出版社,1987.12-22.
  • 6田京雷,毕胜.基于视频的客流计数系统的研究[C].第十二届全国图象图形学学术会议论文集.2005年:278-282.
  • 7Moore AW, Zuev D. Internet traffic classification using Bayesian analysis techniques. In: Proc. of the 2005 ACM SIGMETRICS Int'l Conf. on Measurement and Modeling of Computer Systems, Banff, 2005. 50-60. http://www.cl.cam.ac.uk/-awm22 /publications/moore2005internet.pdf.
  • 8Madhukar A, Williamson C. A longitudinal study of P2P traffic classification. In: Proc. of the 14th IEEE Int'l Syrup. on Modeling, Analysis, and Simulation. Monterey, 2006. http://ieeexplore.ieee.org/xpl/ffeeabs_all.jsp?arnumber=1698549.
  • 9Moore AW, Papagiannaki K. Toward the accurate identification of network applications. In: Dovrolis C, ed. Proc. of the PAM 2005. LNCS 3431, Heidelberg: Springer-Verlag, 2005.41-54.
  • 10Karagiannis T, Papagiannaki K, Faloutsos M. BLINC: Multilevel traffic classification in the dark. In: Proc. of the ACM SIGCOMM. Philadelphia, 2005. 229-240. http://conferences.sigcomm.org/sigcomm/2005/paper-KarPap.pdf.

共引文献477

同被引文献13

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部