期刊文献+

基于直方图加权HCBP的人脸表情识别 被引量:10

Facial expression recognition based on histogram weighted HCBP
在线阅读 下载PDF
导出
摘要 针对局部二值模式(Local binary pattern,LBP)及其改进算法所提取的特征维数过长、局部特征描述不够充分的缺点,提出了一种基于直方图加权HCBP(Haar-like centralized binary pattern,HCBP)的人脸表情识别方法。首先将人脸图像分成大小均匀的若干子块,利用HCBP算子提取各子块的纹理特征;然后通过信息熵的计算求得各子图像的权值,将加权子块HCBP特征直方图和原图像的HCBP直方图进行联合作为表情特征;最后,使用最近邻分类器对特征进行分类。Haar型特征与CBP相结合使得本文特征提取算法对局部特征的描述更为充分,信息熵的引入区分了人脸不同部位对表情的贡献程度。通过在JAFFE和Cohn-Kanade人脸表情库的实验证明:本文方法具有更高的识别率和识别效率。 In order to overcome the limitation of local binary pattern( LBP) and its improved algorithm,a facial expression method based on histogram weighted HCBP is proposed. Firstly,facial image is divided into some uniform sub-image,and HCBP operator is used to extract texture feature. Then the information entropy is used to calculate the weight of every sub-image,weighted HCBP histogram of sub-image is combined with the HCBP histogram of the original image,and the result histogram image is accomplished as the facial expression feature. Finally,the expression is classified with the nearest neighbor classifier. Using the combination of Haar-like feature and CBP operator makes the description of local feature more sufficient. The introduction of information entropy can distinguish the contribution of different partitions of the face. The experimental results in JAFFE library and Cohn-Kanade library show that the HCBP method outperforms than existing LBP methods in both the recognition rate and the speed.
出处 《电子测量与仪器学报》 CSCD 北大核心 2015年第7期953-960,共8页 Journal of Electronic Measurement and Instrumentation
基金 国家"863"计划(2012AA011103) 安徽省科技攻关(1206c0805039) 国家自然科学青年基金(61300119) 国家自然科学基金(61432004)资助项目
关键词 局部二值模式 HCBP算子 人脸表情识别 直方图加权 LBP HCBP facial expression recognition histogram weighted
  • 相关文献

参考文献9

  • 1Xiaowei Zhao,Xiujuan Chai,Zhiheng Niu,Cherkeng Heng,Shiguang Shan.Context modeling for facial landmark detection based on Non-Adjacent Rectangle (NAR) Haar-like feature[J]. Image and Vision Computing . 2011 (3)
  • 2Lee Hyung-Soo,Kim Daijin.Tensor-based AAM with continuous variation estimation: application to variation-robust face recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence . 2009
  • 3Zhenhua Guo,Lei Zhang,David Zhang.A completed modeling of local binary pattern operator for texture classification. IEEE Transactions on Image Processing . 2010
  • 4Viola Paul,Jones Michael.Rapid Object Detection using a Boosted Cascade of Simple Features[].Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.2001
  • 5YING Z L,FANG X Y.Combining LBP and Adaboost for facial expression recognition. Proceedings of Signal Processing . 2012
  • 6SINGH S,MAURYA R,MITTAL A.Application of complete local binary pattern method for facial expression recognition. Proceedings of Intelligent Human Computer Interaction . 2012
  • 7ASTHANA A,SARAGIH J,WAGNER M.Evaluating AAM fitting methods for facial expression recognition. Proceedings of Affective computing and Intelligent Interaction and Workshops . 2009
  • 8HUANG D,ARDABILIAN M,WANG Y H,et al.A novel geometric facial representation based on multiscale extended local binary patterns. Proceedings of Automatic Face and Gesture Recognition and Workshops . 2011
  • 9WANG Y,MU Z C,ZENG H.Block-based and multiresolution methods for ear recognition using wavelet transform and uniform local binary patterns. Proceedings of Pattern Recognition . 2008

共引文献2

同被引文献98

引证文献10

二级引证文献75

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部