期刊文献+

基于改进的LBP面部识别智能算法

Face Recognition Algorithm Based on Improved Intelligence LBP
在线阅读 下载PDF
导出
摘要 在传统的LBP算法的基础上,提出了一种改进的自适应阈值算法用于人类面部识别.提取图像的每个子区域的LBP,根据子区域图像自身的情况设定阈值,利用该阈值提取纹理特征,同时融合信息熵对分解的特征层进行直方图加权,在FERET人脸数据库上进行的实验证明,本文提出的算法具有更高的鉴别能力和对噪声干扰的更强的鲁棒性,能够有效提高图像检索的准确率. Based on the traditional LBP algorithm, an improved adaptive threshold algorithm for human face recognition is proposed. Extraction of each sub region image LBP, it set the threshold according to the sub re-gion of the image itself, using texture feature extraction with the threshold value, at the same time integrated fu-sion information entropy histogram weighted on the decomposition of the feature layer, and demonstrated on FERET face database for experiments. The paper proposed that algorithm has higher ability to identify the im-ages and stronger robustness for noise interference which can effectively improve the accuracy of image re-trieval.
作者 陆玉 张华
出处 《韶关学院学报》 2015年第2期11-14,共4页 Journal of Shaoguan University
基金 阜阳职业技术学院2013年教科研项目(2013JKYXM11)
关键词 人脸识别 LBP 自适应 face recognition LBP adaptive
作者简介 玉(1982-),女,安徽涡阳人,阜阳职业技术学院人文社科系讲师;研究方向:模式识别.
  • 相关文献

参考文献7

二级参考文献27

  • 1罗莉,罗强,胡守仁.前馈多层神经网络的一种优质高效学习算法[J].计算机研究与发展,1997,34(2):107-112. 被引量:38
  • 2刘明宝.人脸检测与跟踪的研究:博士学位论文[M].哈尔滨:哈尔滨工业大学,1997..
  • 3羊昌荛.电视原理[M].北京:人民邮电出版社,1988..
  • 4Pietikainen M, Ahonen T, Hadid A. Face recognition with local binary patterns[C]//Proceedings of the European Conference on Computer Vision, 2004 : 469-481.
  • 5Turk M A,Pentland A P. Eigenfaces for recognition[J]. Journal of Cognitive Neuroscience, 1991,3 (1) : 71-86.
  • 6Etemad K, Chellapa R. Face recognition using discriminant eigenvectors[C]// Proceedings of the Interna- tional Conference on Acoustic,Speech and Signal Processing. 1996.
  • 7Gottumukkal R,Asari V K. An improved face recognition technique based on modular PCA approach [J]. Pattern Recognition Letters, 2004,25 :429-436.
  • 8Wiskott L,Fellous J-M,Kuiger N, et al. Face recognition by elastic bunch graph matching[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997,19 : 775 -779.
  • 9Ojala T, PietiKainen M, Maenpaa T. Multiresolution gray -scale and rotation invariant texture classification with local binary patterns[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002,24(7) : 971-987.
  • 10Maenpaa T, Pietikainen M. Texture analysis with local binary patterns[M]. Chen C H,Wang P S P,eds. Handbook of Pattern Recognition and Computer Vision. 3rd edition. World Scientific, 2005: 197-216.

共引文献369

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部