期刊文献+

基于深度学习的WorldView-3城市目标分类应用研究 被引量:5

Research on Deep Learning Algorithm Application in Urban Classification with WorldView-3 Remote Sensing Images
在线阅读 下载PDF
导出
摘要 WorldView-3是目前空间分辨率最高的商业卫星数据,具有立体采集、1∶5000测图能力,同时又具有更多的光谱波段,有利于地物识别。本文尝试基于深度学习分类工艺和方法,探讨利用0.31 m WorldView-3多光谱、高分辨率遥感影像的地物识别能力,通过选取试验区对房屋建筑区、植被、阴影、水体、棚房等城市目标进行分类试验,分析针对分米级高分辨率遥感影像城市目标分类试验工艺和关键参数设置、样本特征选取。试验结果表明模型具有一定样本容错能力,并在一定程度上可以有效挖掘WorldView-3的不同材质地物识别能力。 In this paper,using deep learning based classification work flow and algorithms,the object recognition capability with 0.31 m WorldView-3 multispectral and high resolution remote sensing image was discussed. An experiment to classify construction area,vegetation,shadow,water,shed housing etc.was carried out to explore the work flow,the key parameter setting and the sample feature selection for decimeter image classification. Finally,the model was validated with the fault tolerance and effectively mining the recognition of object with different material with WorldView-3.
作者 祝晓坤
出处 《测绘通报》 CSCD 北大核心 2017年第S2期40-43,共4页 Bulletin of Surveying and Mapping
基金 2017年度国家测绘地理信息局青年学术和技术带头人科研计划课题
关键词 深度学习 城市 WorldView-3 遥感 分类 deep learning urban Worldview-3 remote sensing classification
  • 相关文献

参考文献3

二级参考文献116

  • 1HINTON G E, OSINDERO S, TEH Y W. A fast learning algorithm for deep belief nets [ J ]. Neural Computation, 2006,18 ( 7 ) : 1527- 1554.
  • 2BENGIO Y, LAMBLIN P, POPOVICI D, et al. Greedy layer-wise training of deep networks [ C ]//Advances in Neural Information Pro- cessing Systems. Cambridge:MIT Press,2007:153-160.
  • 3VINCENT P, LAROCHELLE H, BENBIO Y, et al. Extracting and composing robust features with denoising autoencoders [ C ]//Proc of the 25th International Conference on Machine [.earning. New York: ACM Press ,2008 : 1096-1103.
  • 4LAROCHELLE H, BENGIO Y, LOURADOUR J, et al. Exploring strategies for training deep neural networks[ J]. Journal of Machine Learning Research,2009,10 (12) : 1-40.
  • 5TAYLOR G, HINTON G E. Factored conditional restricted Bohzmann machines for modeling motion style [ C ]//Proc of the 26th Annual In- ternational Conference on Machine Learning. New York:ACM Press, 2009 : 1025-1032.
  • 6SALAKHUTDINOV R, HINTON G E. Deep Boltzmann machines [ C ]//Proe of the 12th International Conference on Artificial Intelli- gence and Statistics. 2009:448-455.
  • 7TAYLOR G, SIGAL L, FLEET D J, et al. Dynamical binary latent variable models for 3D human pose tracking[ C ]//Proe of IEEE Con- ferenee on Computer Vision and Pattern Recognition. 2010:631-638.
  • 8JARRETY K, KAVUKCUOGLU K, RANZATO M, et al. What is the best multi-stage architecture for object recognition? [ C ]//Pine of the 12th International Conference on Computer Vision. 2009:2146-2153.
  • 9LEE H, GROSSE R, RANGANATH R, et al. Convolutional deep belief networks for scalable unsupervised learning of hierarchical rep- resentations [ C ]//Proc of the 26th International Conference on Ma- chine Learning. New York : ACM Press ,2009:609-616.
  • 10LEE H, PHAM P, LARGMAN Y, et at. Unsupervised feature learn- ing for audio classification using convolutional deep belief networks [C ]//Advances in Neural Information Processing Systems. Cam- bridge : MIT Press ,2009 : 1096-1104.

共引文献327

同被引文献41

引证文献5

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部