期刊文献+

一种基于GBRT算法的CA砂浆脱空检测方法 被引量:9

A detection method of CA mortar disengaging based on GBRT algorithm
在线阅读 下载PDF
导出
摘要 不同于现有检测方法,利用CA砂浆脱空和非脱空情况下采集到的声音信号不同,提出把机器学习领域中的GBRT算法应用到CA砂浆脱空检测领域。利用脱空和非脱空情况下采集到的数据,使用GBRT算法训练出一个二分类模型;通过对输入数据做类别决策,判断对应的采集位置是否脱空。介绍算法原理,并结合CA砂浆脱空问题,分析模型的使用技巧;引入其他主流机器学习分类算法进行比较分析。实验结果证明,GBRT算法构造的模型性能较好,在CA砂浆脱空检测领域具有应用前景。 Different from the existing detection methods, the GBRT algorithm of machine learning was applied in the CA mortar disengaging detection field using the difference between the sound signal of track slab collected at void and non-void situation for the first time. Using the data collected at the void and non-void situation, a binary classification model was trained with the GBRT algorithm. Category-decision was made for the input data and whether corresponding gathering place is void was judged. The algorithm principle was explained in detail, and the use skills of the model were analyzed combined with the CA mortar disengaging detection. Other mainstream machine learning classification algorithms were introduced for comparative analysis. And the result shows that the GBRT algorithm is much better and has a great application prospect in this field.
出处 《铁道科学与工程学报》 CAS CSCD 北大核心 2018年第2期292-301,共10页 Journal of Railway Science and Engineering
基金 国家自然科学基金资助项目(61271383) 华侨大学研究生科研创新能力培育计划资助项目(1511314017)
关键词 无砟轨道 CA砂浆 脱空 GBRT算法 机器学习分类算法 ballastless track CA mortar disengaging GBRT algorithm machine learning classification algorithm
作者简介 通信作者:谢维波(1964-),男,福建泉州人,教授,从事机器学习算法及其应用研究;E-mail:xwblxf@hqu.edu.cn
  • 相关文献

参考文献8

二级参考文献47

共引文献120

同被引文献158

引证文献9

二级引证文献52

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部