期刊文献+

基于图像处理和最小二乘法的原子力显微镜光路自动调整方法 被引量:2

AFM Optical Path Automatic Alignment Based on the Image Processing and Least Square
在线阅读 下载PDF
导出
摘要 提出了一种基于图像处理和最小二乘法的原子力显微镜光路自动调整方法,通过在AFM系统的探针架上安装一个计算机控制、可二维移动的电机,采用该算法实现对原子力显微镜反射光路自动调整。依靠自适应阈值分割和识别CCD图像中的探针微悬臂,采用差分法识别激光光斑。电机移动微悬臂的距离与其在CCD图像中像素位置变化之间的关系式由最小二乘法线性拟合。最后通过拟合的关系式系数使探针上方微悬臂自动移至光斑中心位置,实现了AFM光路自动调整。 A method of AFM optical path automatic alignment based on image processing and least square is proposed in this paper. In this method, AFM probe is equipped with a computer controlled two-dimensional moving motor, and AFM optical path is automatically aligned by the relevant algorithm. Cantilever and laser spot images in the CCD are recognized by adaptive threshold and image differential. The relationship between the distance of motor moving cantile ver and the change of pixel position in CCD image is linearly fitted by the least square. Finally, the cantilever can be moved to the center of laser spot automatically by fitting coefficients, and the optical path of the AFM can be automatically aligned. AFM optical path automatic alignment is realized.
作者 程利群 曲英敏 杨焕洲 孙佰顺 CHENG Liqun;QU Yingmin;YANG Huanzhou;SUN Baishun(International Research Centre for Nano Handling and Manufacturing of China,Changchun University of Science and Technology,Changchun 130022)
出处 《长春理工大学学报(自然科学版)》 2018年第6期6-10,共5页 Journal of Changchun University of Science and Technology(Natural Science Edition)
基金 科技部政府间国际科技创新合作重点专项(2017YFE0112100)
关键词 光路 自适应阈值 差分 最小二乘法 optical path adaptive threshold differential least square
作者简介 程利群(1988-),男,硕士,研究实习员,E-mail:liquncheng827@126.com.
  • 相关文献

参考文献4

二级参考文献41

  • 1李喆,丁振良,袁峰.基于共面点的多视觉测量系统的全局标定[J].光学精密工程,2008,16(3):467-472. 被引量:22
  • 2王薇,陈怀新.基于优化探测窗口的光斑质心探测方法[J].强激光与粒子束,2006,18(8):1249-1252. 被引量:15
  • 3高丽,杨树元,李海强.一种基于标记的分水岭图像分割新算法[J].中国图象图形学报,2007,12(6):1025-1032. 被引量:110
  • 4Salapaka S M, De T, Sebastian A. A robust control based solution to the sample-profile estimation problem in fast atomic force microscopy. International Journal of Robust and Nonlinear Control, 2005, 15(16): 821-837.
  • 5Shiraishi T, Fujimoto H. Proposal of surface topography observer considering Z-scanner for high-speed AFM. In: Proceedings of the American Control Conference. Baltimore, USA: IEEE. 2010. 2754-2759.
  • 6Sebastian A, Sahoo D R, Salapaka M V. An observer based sample detection scheme for atomic force microscopy. In: Proceedings of the 42nd IEEE Conference on Decision and Control. Maui, USA: IEEE, 2003. 2132-2137.
  • 7Schitter G, Stemmer A. Model-based signal conditioning for high-speed atomic force and friction force microscopy. Microelectronic Engineering, 2003, 67--68:938--944.
  • 8Schitter G, Allgower F, Stemmer A. A new control strategy for high-speed atomic force microscopy. Nanotechnology, 2004, 15(1): 108-114.
  • 9Zhou X W, Fang Y C, Dong X K, Zhang Y D. System modeling of an AFM system in Z-axis. In: Proceedings of the 7th IEEE Conference on Nanotechnology. Hong Kong, China: IEEE, 2007. 96-99.
  • 10Xi N, Fung C K M, Yang R G, Seiffert-Sinha K, Lai K W C, Sinha A A. Bionanomanipulation using atomic force microscopy. IEEE Nanotechnology Magazine, 2010, 4(1): 9-12.

共引文献17

同被引文献21

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部