期刊文献+

基于模糊认知图的纯电动汽车扩散分析 被引量:8

Evolutionary Analysis of Battery Electric Vehicle Based on Fuzzy Cognitive Map
在线阅读 下载PDF
导出
摘要 基于模糊认知图构建了纯电动汽车扩散模型,在3种不同政府补贴政策基础上,从扩散速率和扩散结果两个方面出发,得出促进纯电动汽车扩散的政策建议。研究表明,在政府给予消费者补贴、给予汽车制造商补贴和给予充电站建设者补贴的3种不同政策刺激下,扩散速率均有所不同。并且,这3种政策对纯电动汽车最终扩散结果具有不同方向的影响:给予消费者补贴对于纯电动汽车的市场占有率的作用是反向的;相反,后两项补贴的增加会带来市场占有率的增加。 A fuzzy cognitive map model for battery electric vehicle(BEV) is constructed, the BEV diffusion rates and diffusion results are simulated in several scenarios based on three different government subsidies, and some relevant policy recommendations are obtained to promote the diffusion of the BEV. The results show that the subsidies for different subiects, i.e. , the consumer, the manufacturer, and the charging station builder, will bring different diffusion rates. Besides, the three policies have different diffusion results, when the subsidy for the consumer increases, the market share will decrease~ but when the subsidies for the latter
作者 杨艳萍 闫宏斌 马铁驹 YANG Yanping, YAN Hongbin, MA Tieju(School of Business, East China University of Science and Technology, Shanghai 200237, Chin)
出处 《系统管理学报》 CSSCI CSCD 北大核心 2018年第2期359-365,共7页 Journal of Systems & Management
基金 国家自然科学基金面上项目(71471063 71571069) 国家自然科学基金杰出青年基金项目(71125002) 上海市教育委员会科研创新项目(重点项目)(14ZS060)
关键词 纯电动汽车 消费者 扩散系统 模糊认知图 充电站 扩散分析 battery electric two increase, the market vehicle (BEV) diffusion share will increase accordingly. system fuzzy cognitive map scenario analysis
作者简介 杨艳萍(1990-),女,硕士生。研究方向为技术扩散。;通信作者:闫宏斌(1979-),男,博士,副教授。E-mail:hbyan@ecust.edu.cn
  • 相关文献

参考文献2

二级参考文献54

  • 1黄天辰,韩京才.基于Agent技术的复杂适应系统分析与建模[J].计算机仿真,2005,22(9):58-60. 被引量:12
  • 2Arrow K J. The economic implications of learning by doing[ J]. Review of Economic Studies, 1962, 29:155 - 173.
  • 3Stephan C, Sullivan J. An agent based hydrogen vehicle: Infrastructure model [ C ]. Proceedings of the Congress on Evolu- tionary Computation, IEEE, New York, 2004: 1774- 1779.
  • 4Malte Schwoon. A tool to optimize the initial distribution of hydrogen filling stations [ J ]. Transportation Research Part D, 2007, 12 : 70 - 82.
  • 5Arthur W B. Increasing returns and the new world of business[ J ]. Harvard Business Review, 1996, 74 (4) : 100 -109.
  • 6Arrow K J. Social Choice and Individual Values[ M]. 2nd ed. New Haven: Yale University Press, 1963:119 -120.
  • 7McDonald A, Schrattenholzer L. Learning rates for energy technologies[J]. Energy Policy, 2001, 29(4) : 255 -261.
  • 8Ma T, Grubler A. The evolution of technological complexity: An agent-based simulation model of the global energy system [ M ]/! Alexander G, Markandya A. Modeling Environment-Improving Technological Innovations under Uncertainty, Rout- ledge, New York, 2009 : 206 - 244.
  • 9Dunham J B. An agent-based spatially explicit epidemiological model in MASON [ J ]. Journal of Artificial Societies and So- cial Simulations, 2005, 9( 1 ), http ://jasss. soc. surrey, ac. uk/9/1/3, html.
  • 10Norman Ehrentreich. Agent-Based Modeling: The Santa Fe Institute Artificial Stock Market Model Revisited[ M ]. Lecture Notes in Economics and Mathematical Systems, Berlin: Springer Verlag, 2007.

共引文献22

同被引文献95

引证文献8

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部