期刊文献+

基于多优化策略RRT的无人机实时航线规划 被引量:11

Multi-optimization RRT Based UAV Real-time Trajectory Planning Algorithm
在线阅读 下载PDF
导出
摘要 研究无人机在复杂战场环境中的实时航线规划问题。提出一种基于多优化策略RRT的无人机实时航线规划算法,解决了无人机在敌方雷达威胁密集部署环境下,面对突发威胁实时规划航线,实现安全飞行的问题。首先精确建立防空雷达模型,有效压缩雷达威胁空间;进一步设计基于目标启发的优化策略使算法能够快速收敛。采用冗余节点裁剪的策略减小航线长度,提高航线平滑性。仿真结果表明,该算法能够有效规避突发威胁,生成航线优化性良好。基于多优化策略RRT的无人机实时航线规划算法具备良好的实时性和优化性,能够满足复杂环境下无人机的安全飞行要求。 UAV real-time trajectory planning in complicated battlefield is researched. The MORRT based UAV real-time trajectory planning algorithm is proposed to ensure the safe fly in the high density of deploy radar environment with emergency threatens. First,radar model is established precisely and the threaten space is reduced efficiently. Then the target heuristic strategy is designed to make the RRT algorithm convergent quickly. Finally,redundant points cutting strategy can reduce the trajectory length and improve its smoothness. Simulation results show that this algorithm can avoid the emergent threatens promptly and generate trajectory with good optimization. The proposed algorithm can make the UAV execute mission safely in complicated environment.
出处 《火力与指挥控制》 CSCD 北大核心 2017年第12期115-119,124,共6页 Fire Control & Command Control
关键词 无人机 多优化策略 快速扩展随机树 实时 航线规划 UAV, multi-optimization, Rapidly exploring Random Tree(RRT), real-time, trajectoryplanning
作者简介 李俊涛(1973-),男,湖北襄樊人,副教授.研究方向:无人机控制与任务规划.
  • 相关文献

参考文献5

二级参考文献37

  • 1徐启华,肖顺达,陈新海.基于总能量原理的飞行性能管理计算[J].西北工业大学学报,1994,12(1):25-30. 被引量:7
  • 2王伟,宁东方,张锦.基于能量状态法的飞机节油轨迹优化及其遗传算法实现[J].测控技术,2006,25(1):56-58. 被引量:18
  • 3Goldman J. Path planning problems and solutions [A]. In: Proc. National Aerospace and Electronics Conf. [C], IEEE, 1994, 105~108.
  • 4Xiao J, Zhang L, Michalewicz Z. On topological and multiple path planning [A]. In: Proc. 2nd Int. Conf. Computational Intelligence and Neuralscience [C], 1997, 10~13.
  • 5Hocaolu C, Sanderson A C. Planning multiple paths with evolutionary speciation [J]. IEEE Trans. Evol. Comput, 2001 5(3): 169~192.
  • 6Zheng C, Zhou C, Ding M. Real-time 3D route planner for unmanned air vehicles [A]. In: SPIE Proc. Visualization and Optimization Techniques[C], 2001, 167~172.
  • 7DeJong K A. An analysis of the behavior of a class of genetic adaptive systems [M]. Ph.D. Dissertation, University of Michigan, 1975.
  • 8Goldberg D E, Richardson J. Genetic algorithms with sharing for multimodal function optimization [A]. In: Proc. 2nd Int. Conf. Genetic Algorithms and Their Applications [C], 1987, 41~49.
  • 9Mahfoud S W. Crowding and preselection revisited [A]. In: Proc. 2nd Conf. Parallel Problem Solving from Nature [C], 1992, 27~36.
  • 10Yao J F, Lin C, Xie X B, et al. Path planning for virtual human motion using improved A star algorithm[C]//Proc, of the 7th International Conference on Information Technology: Neve, Generations, 2010:1154-1158.

共引文献85

同被引文献110

引证文献11

二级引证文献88

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部