期刊文献+

铺层角度对碳纤维/形状记忆环氧树脂层合板形状回复性能的影响 被引量:2

Shape Recovery Properties of Carbon Fiber/Shape Memory Epoxy Resin Laminates with Diverse Ply Angles
在线阅读 下载PDF
导出
摘要 对不同铺层角度的碳纤维/环氧树脂形状记忆复合材料(SMC)层合板的弯曲回复性能进行了研究。结果表明,[±θ]_s铺层方式的SMC层合板的形状回复率、回复力均随着铺层角度增大而减小,回复时间随着铺层角度增大而增大,其中铺层角度增大至45°后,回复时间开始出现大幅的增加,铺层角度增大至60°后,回复率开始出现大幅的降低。对SMC层合板进行了15次的赋形-回复循环过程,发现不同铺层角度SMC层合板均能保持较稳定的形状记忆回复率和回复时间。但在铺层角度0~30°的范围内,层合板的形状回复力随着铺层角度增大而减小。最后分析了不同铺层角度SMC层合板的局部损伤,结果表明,[0]_4和[±15]_s铺层方式的SMC层合板基体已达到了其极限剪切应变,基体发生严重破坏,并且会随着赋形次数的增加而加剧。 The performances of flexural recovery and the local damage of the shape memory composite(SMC)laminates,which were composed of epoxy resin matrix and carbon fiber reinforcement,and differed in ply orientation,were studied.The research showed that the recovery ratio and force of[±θ]_s laminates decrease with the increase of ply angle,while the recovery time increases.The recovery time rises substantially when the ply angle reaches 45°,and the recovery ratio begins to reduce substantially when the ply angle reaches 60°.The recovery ratio and recovery time of the SMC laminates changed little during 15 cycles bending-recovering process,but the recovery force decreases gradually with the ply angle increasing from 0° to 30°.Finally,the local damage of laminates was analyzed.The result shows that the matrix of [0]_4 and [±15]_s laminates has reached ultimate shear strain and been badly damaged,and the damage will be worse with the increase of shaping times.
出处 《材料导报》 EI CAS CSCD 北大核心 2017年第20期11-16,共6页 Materials Reports
基金 上海市空间飞行器机构重点实验室开放课题资助项目
关键词 形状记忆复合材料(SMC) 环氧树脂 碳纤维 层合板 铺层角度 回复率 回复力 损伤 shape memory composite(SMC) epoxy resin carbon fiber laminate ply angle recovery ratio recovery force damage
作者简介 陈毓焘:男,1990年生,硕士研究生,主要从事先进复合材料方面的研究;李文晓:通讯作者,女,1968年生,博士,副教授,硕士研究生导师,主要从事先进复合材料、耐高温泡沫等方面的研究E-mail:1433480@tongji.edu.cn;wenxiaoli@tongji.edu.cn
  • 相关文献

参考文献2

二级参考文献28

  • 1Campbell D, Lake M S, Seherbarth M R. Elastic memory composite materials: An enabling technology for future furable space structures [C]. 46th Structural Dynamics, and Materials Conference, Austin: Texas, 2005.
  • 2Lendlein A, Kelch S. Shape-memory polymers [J]. Angew. Chem Int. Ed., 2002, 41(6): 2034--2057.
  • 3Francis W H, Lake M S, Hinkle J S. A review of classical fiber microbuckling analytical solutions for use with elastic memory composites [J]. AIAA Journal, 2006,21(4): 1764-- 1776.
  • 4Campbell D. Deployment precision and mechanics of elastic memory composites [J]. AIA/k Journal, 2003, 18(6): 1495-- 1506.
  • 5Campbell D, Barrett R, Lake M S. Development of a novel, passively deployed solar array [J]. AIAA Journal, 2006, 21(9): 2080--2094.
  • 6Francis W H, Lake M S, Mallick K. Development and testing of a hinge/actuator incorporating elastic memory composites [J]. AIAA Journal, 2003, 18(9): 1805--1816.
  • 7Francis W H, Lake M S. Development of an EMC self-locking linear actuator for deployable optics [J]. AIAA Journal, 2004, 19(9): 1821--1833.
  • 8Barret R, Campbell D, Lake M S. Development of a passively deployed roll-out solar array [J]. AIAA Journal, 2006, 21(12): 4011--4023.
  • 9Schultz M R, Hulse M J, Keller P N. Neutrally stable composite tape springs [J]. AIAA Journal, 2006, 21(5): 1801--1823.
  • 10Keller P N, Lake M S, Codell D. Development precision reflector [C]. Norfolk: AIAA, 2008.

共引文献4

同被引文献11

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部