期刊文献+

基于PMP的钢轨三维形貌在线测量模糊条纹复原 被引量:3

Image restoration for blurred fringes of rail profile 3D online measurement based on PMP
在线阅读 下载PDF
导出
摘要 在线相位测量轮廓术(PMP)中,当被测物体运动速度较高时,所采集的变形条纹往往为运动模糊图像,使得复原误差增大,严重时可能导致三维重建无法进行。将在线PMP运用于钢轨外形及表面缺陷的在线三维测量时,为了实现钢轨表面模糊变形条纹的清晰化,本文对维纳滤波法、点扩散函数算法、盲解卷积算法和Richardson-Lucy算法等几种模糊图像复原算法进行了对比分析,用峰值信噪比对模糊条纹图像的复原效果进行评估。同时,研究了车辆运行速度和图像复原效果之间的关系,得出了复原效果与运行速度之间的关系曲线,进行了误差分析,并用在线PMP实现了钢轨外形的三维重建。理论及实验结果表明:在对钢轨外形轮廓及表面缺陷的在线三维测量时,Richardson-Lucy算法的复原效果最佳,图像复原程度与车辆运行速度呈多项式关系。 In online phase measurement profilometry(PMP),when the which velocity of the the shape object is quite high,error,flaw,the or collected even reformed to fringes often appear to be motion-blurred the images,increases measurement and leads clarify the the 3D reconstruction failure.In online rail,PMP 3D measurement of rail such surface in order to blurred reformed fringes of the several restoration methods,as Wiener were Filtering,compared Point and Spread Function And algorithm,peak Blind to Deconvolution noise algorithm,and for Richardson-Lucy evaluating algorithm analyzed.relationship shape the signal vehicle ratio and(PSNR)is used the the restoration error effect.Meanwhile,the between the speed on the PMP.restoration effect was studied,was show analyzed that and the 3D rail was reconstructed rail based online flaw,Theoretical and experimental algorithm results best in the online 3D of measurement motion of and shape and surface the Richardson-Lucy is the the one for image is restoration blur,the relationship between the effect of image restoration and vehicle speed a polynomial.
出处 《光电工程》 CAS CSCD 北大核心 2017年第7期695-700,共6页 Opto-Electronic Engineering
基金 国家自然科学基金资助项目(61471304)
关键词 变形条纹 模糊图像复原 Richardson-Lucy算法 峰值信噪比 deformed fringe blurred image restoration Richardson-Lucy algorithm PSNR
作者简介 E—mail:jinlong—lee@126.com
  • 相关文献

参考文献8

二级参考文献174

  • 1刘晓辉,郭成安,胡家升.惯性约束聚变中环孔编码图像恢复的改进维纳滤波方法[J].光学学报,2004,24(8):1045-1050. 被引量:16
  • 2张德丰,张葡青.维纳滤波图像恢复的理论分析与实现[J].中山大学学报(自然科学版),2006,45(6):44-47. 被引量:18
  • 3Banham M R, Katsaggelos A K. Digital image restoration [ J]. Signal Processing, 1997, 14(2) : 24-41.
  • 4Robbins G M, Huang T S. Inverse filtering for linear shift-variant imaging systems [ J ]. Proceedings of IEEE, 1972, 60 (7) : 862-872.
  • 5Brigham E O, Smith H W, Bostick F X, et al. An iterative technique for determining inverse filters [ J]. IEEE Transactions on Geoscience Electronics, 1968, 6(2) :86-96.
  • 6Springer T, Torres J, Pearce J A, et al. Restoration of thermographic images using iterative inverse filtering [ J]. Engineering in Medicine and Biology Society, 1989, 2 (2) : 365-366.
  • 7Chottera A, Jullien G. Recursive digital filters in image processing [ A ]. In: Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing [C], Tulsa, OK, USA, 1978: 757-760.
  • 8Hsiao C C, Chi C Y. Image modeling and restoration by higher-order statistics based inverse filters [ A ]. In: Proceedings of IEEE Seventh SP Workshop on Statistical Signal and Array Processing [ C ], Quebec, Canada, 1994, 203-206.
  • 9Chi C Y, Wu M C. A unified class of inverse filter criteria using two cumulants for blind deconvolution and equalization [ A ]. In: Conference on ICASSP- 95 [ C ] , Detroit, MI, USA , 1995, 3: 1960-1963.
  • 10Galatsanos N P,Katsaggelos A K. Methods for choosing the regularization parameter and estimating the noise variance in image restoration and their relation [J]. IEEE Transactions on Image Processing, 1992, 1(3) :322-336.

共引文献118

同被引文献26

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部