期刊文献+

基于时频分布图像纹理特征的局部放电特高频信号的特征参数提取方法 被引量:13

Feature Parameters Extraction Method of Partial Discharge UHF Signal Based on Textural Features in Time-frequency Representation Image
在线阅读 下载PDF
导出
摘要 针对局部放电特高频(ultra-high frequency,UHF)信号畸变导致模式识别准确率下降的问题,提出了基于时频分布图像纹理特征的特征参数提取方法。首先对局部放电UHF信号进行s变换得到时频分布图像,然后采用灰度共生矩阵(gray-level co-occurrence matrix,CLCM)算法,从时频分布图像中提取出纹理特征参数。采用主成分分析(principal component analysis,PCA)法对由纹理特征参数构成的特征向量进行降维处理,得到局部放电UHF信号特征参数及特征向量,并输入到支持向量机(support vector machine,SVM)分类器中进行模式识别。结果表明,该特征参数可以有效识别4种典型变压器内部局部放电UHF信号,识别准确率最高达到97.50%。 In order to solve reduction of pattern recognition accuracy when partial discharge ultra-high frequency (UHF) signal is distorted, a novel feature parameters extraction method based on textural features in time-frequency (TF) representation image is proposed. Firstly, the TF representation image of partial discharge UHF signal can be obtained by the s-transform. Secondly, the textural features of TF image can be extracted by the gray-level co- occurrence matrix (GLCM) method. Through the principal component analysis (PCA) method, the eigenvector consisted by textural features can be dimensionality reduced. The feature parameters and eigenvector of par- tial discharge UHF signal can be obtained and inputted into the support vector machine (SVM) classifier for pat- tern recognition. The test and recognition results show that the proposed feature parameters can be used to recog- nize 4 types of typical partial discharge UHF signal in transformer, and the highest recognition accuracy reached 97.50%.
出处 《高压电器》 CAS CSCD 北大核心 2017年第7期30-37,44,共9页 High Voltage Apparatus
基金 广州供电局有限公司科技项目(GZHKJ00000008)~~
关键词 局部放电 UHF信号 时频分布 纹理特征 特征参数 模式识别 partial discharge UHF signal time-frequency representation textural features feature parameters pattern recognition
作者简介 田妍(1988-),女,工程师,研究方向为电气设备故障诊断。
  • 相关文献

参考文献12

二级参考文献204

共引文献316

同被引文献151

引证文献13

二级引证文献113

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部