摘要
针对效能函数中目标优先级分配不合理从而导致传感器资源分配效率不高的问题,采用模糊控制和神经网络方法来解决线性加权求和方法在目标参数量化和优先级分配中的困难,提出了自适应多传感器资源管理方法,利用神经网络自主学习的能力和模糊控制在处理不确定信息方面的能力提高传感器资源分配效率。仿真结果表明,改进方法可以根据不同目标自适应分配有限的传感器资源,相比传统传感器管理方法更加高效。
Aiming at the problem of sensor resource' s low allocation efficiency resulted by unreasonable allocation of the target' s priority in efficacy function, the fuzzy control and neural network (NN) are introduced to solve the problem that it is difficult to apply the linear weighted sum method in quantifying the target parameter and allocating the priority, and a self-adaptive management method of multi-sensor resource based on efficacy function is proposed. The sensor resource allocation efficiency was promoted by using autonomous learning ability of the neural network and fuzzy theory's ability to handle uncertain information. The simulation results show that the method proposed in this article can allocate the limited sensor resource self adaptively according to different targets, resulting in a more effi- cient approach compared with the traditional sensor management method.
出处
《计算机仿真》
北大核心
2017年第5期322-326,共5页
Computer Simulation
基金
2014年度全军军事类研究生资助课题(2014JY548)
国家自然科学基金编号(61302193)
关键词
效能函数
多传感器管理
神经网络
模糊理论
Efficacy function
Management of multi-sensor
Neural network
Fuzzy theory
作者简介
郑玉军(1988-)男(汉族),山东省济宁市人,博士研究生,主要研究领域为预警情报组网;
田康生(1963-)男(汉族),湖北省武汉市人,教授,博士生导师,主要研究领域为雷达情报组网、信息融合;
张金林(1977-)男(汉族),安徽省六安市人,副教授,主要研究领域为电子科学与技术:
刘俊凯(1979-)男(汉族),河北省景县人,讲师,主要研究领域为新体制雷达探测技术。