期刊文献+

在线学习资源个性化推荐服务模型的构建 被引量:8

Construction of personalized recommendation service model of online learning resources
在线阅读 下载PDF
导出
摘要 该研究通过梳理国内外个性化学习资源建设现状,提出利用学习者自我评价和FelderSilverman量表进行前测以检测学习者的学习风格,利用学习者在学习过程中的学习行为和学习路径等分析出隐性学习者特征,采用协同过滤技术和数据挖掘技术相结合的方法将学习者特征与在线学习资源相匹配,建构基于协同过滤和数据挖掘的在线学习资源个性化推荐服务模型并进行案例实践,以期为在线学习者特征的维度确立以及在线学习资源个性化建设等研究提供参考。 By understanding the status of personalized learning resources construction at home and abroad, the study presents the following ideas : using the learner s self-evaluation and pre-test method of Felder-Silverman scale to test learner learning styles; using learners ' learning behavior in learning process to construct learners ' hidden characteristics, adopting the combination of collaborative filtering technology and data mining technology to match learners'characteristics with online learning resources, and constructing personalized recommendation service of online learning resources mainly based on collaborative filtering and data mining and carrying out case practice. We hope to provide reference for studies on establishment of online learner characteristics dimension and construction of personalized recommendation service of online learning resources.
出处 《中国医学教育技术》 2017年第2期172-176,共5页 China Medical Education Technology
关键词 在线学习资源 个性化推荐 协同过滤 数据挖掘技术 online learning resources personalized recommendation collaborative filtering data mining technology
作者简介 张小雪(1994-),女,新疆伊犁人,硕士研究生在读,主要研究方向:教育技术基本理论,网络与远程教育. 通信作者:张立国(1965-),男,陕西榆林人,教授,博士,主要研究方向:教育技术基本理论,网络与远程教育.电话:18629426083;E-mail:zhangliguok@126.com
  • 相关文献

参考文献4

二级参考文献43

  • 1姜曾贺,吴战杰.网络环境下多维学习者特征分析模型的构建[J].电化教育研究,2005,26(4):71-73. 被引量:12
  • 2Barbara A. Soloman, Richard M. Felder. Index of Learning Styles Questionnaire[EB/OL]. http://www. engr. ncsu. edu/leamingstyles/ilsweb. html.
  • 3Gra,f S.. Adaptivity in Learning Management Systems Focussing on Learning Styles [ D ] . University of Vienna, 2007.
  • 4Elvira Popescu. Dynamic adaptive hypermedia systems for e - learning[ D]. University of Craiova, 2008.
  • 5Xia Jianxun.An Improved Similarity Algorithm Based on Hesitation Degree for User-Based Collaborative Filtering [A]. Conference on Communication Faculty [C]. Nanning, PEOPLES R CHINA: Proceedings of 2009 Conference On Communication Faculty, 2009.104-108.
  • 6Ormandi,Robert;Hegedus,Istvan.Overlay Management for Fully Distributed User-Based Collaborative Filtering[A]. 16th Internalional Euro-Par Conference on Parallel Processing [C]. Ischia, ITALY: EURO-PAR 2010 PARALLEL PROCESSING PT 1,2010,446-457.
  • 7Zhao Zhi-Dan;Shang Ming-Sheng .User-based Collaborative- Fihering Recommendation Algorithms on Hadoop A]. 3rd International Conference on Knowledge Discovery and Data Mining [C]. Phuket, THAILAND: Third International Conference On Knowledge Discovery And Data Mining Proceedings,2010,478-481.
  • 8Mu,XW; Chen, Y. An Improved Similarity Algorithm Based on Hesitation Degree for User-Based Collaboralive Filtering [A]. 5th International Symposium on Intelligence Computation and Applications [C]. Wuhan, PEOPLES R CHINA: Advances In Computation And Intelligence,2010,261-271.
  • 9Luo,Q;Tian,X.A Personalized Recommendation Algorithm Combining Slope One Scheme and User Based Collaborative Filtering [A] International Conference on Industrial and Information Systems [C] Hankou,China: 2009 International Conference On Industrial And Information System,Proceeding,2009,152-154.
  • 10Lei Ren; Junzhong Gu.An Item-based Collaborative Filtering Approach based on Balanced Rating Prediction [A] 2011 Internation Conference on Multimedia Technology [C].Hangzhou, China: 2011 International Conference on Muhimedia Technology, 2011.

共引文献145

同被引文献35

引证文献8

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部