期刊文献+

小时间序列的动态朴素贝叶斯分类器学习与优化 被引量:12

Learning and optimization of dynamic naive Bayesian classifiers for small time series
原文传递
导出
摘要 小时间序列在宏观经济领域普遍存在,对小时间序列的分类预测也有着广泛的需求.由于小时间序列蕴含的信息不充分,有效地提高小时间序列分类预测的可靠性非常困难,目前也缺少这方面的研究.针对这种情况,在基于引入平滑参数的高斯核函数估计属性边缘密度的基础上,建立用于小时间序列分类预测的动态朴素贝叶斯分类器,并给出平滑参数的同步和异步优化方法.实验结果表明,优化能够显著提高小时间序列分类预测的准确性. The small time series exists generally in the field of macroeconomy. There are wide demands for the classification of small time series in macroeconomy. Because the information contained in the small time series is not sufficient, it is very difficult to effectively improve the reliability of small time series classification. In view of this situation, on the basis of using the Gaussian kernel function of introducing the smoothing parameter to estimate the attribute marginal density, the dynamic naive Bayesian classifier for small time series classification is presented, and the synchronous and asynchronous optimization method for smoothing parameters are given. The experimental results show that the classification accuracy of the small time series classifier can be improved significantly by optimization.
出处 《控制与决策》 EI CSCD 北大核心 2017年第1期163-166,共4页 Control and Decision
基金 国家自然科学基金项目(61272209) 上海市自然科学基金项目(15ZR1429700)
关键词 贝叶斯网络 分类器 时间序列 高斯核函数 平滑参数 Bayesian network classifiers time series Gaussian kernel function smoothing parameter
作者简介 王双成(1958-),男,教授,博士,从事人工智能、机器学习、数据采掘及其应用等研究;通信作者.E—mail:wangsc@lixin.edu.cn 高瑞(1980-),女,讲师,博士,从事应用统计与数据采掘的研究.
  • 相关文献

参考文献2

二级参考文献39

  • 1王双成,苑森淼.具有丢失数据的贝叶斯网络结构学习研究[J].软件学报,2004,15(7):1042-1048. 被引量:62
  • 2Chow C K, Liu C N. Approximating discrete probability distributions with dependence trees[J]. IEEE Trans on Information Theory, 1968, 14(3): 462-467.
  • 3Friedman N, Geiger D, Goldszmidt M. Bayesian network classifiers[J]. Machine Learning, 1997, 29(2/3): 131-161.
  • 4Jing Y S, Pavlovie V, Rehg J M. Boosted Bayesian network classifiers[J]. Machine Learning, 2008, 73(2): 155-184.
  • 5John G H, Langley P. Estimating Continuous Distributions in Bayesian Classifiers[C]. Proc of the Eleventh Conf on Uncertainty in Artificial Intelligence(UAI-1995). San Mateo: 1995: 338-345.
  • 6Ptrez A, Larrafiagaa P, Inzaa I. Supervised classification with conditional Gaussian networks: Increasing the structure complexity from naive Bayes[J]. Int J of Approximate Reasoning, 2006, 43(1): 1-25.
  • 7Perez A, Larratnagaa P, Inza I. Bayesian classifiers based on kernel density estimation: Flexible classifiers[J]. Int J of Approximate Reasoning, 2009, 50(2): 341-362.
  • 8Bounhas M, Mellouli K, Prade H, et al. Possibilistic classifiers for numerical data[J]. Soft Computing, 2013, 17(5): 733-751.
  • 9He Y L, Wang R, Kwong S, et al. Bayesian classifiers based on probability density estimation and their applications to simultaneous fault diagnosis[J]. Information Sciences, 2014, 259(2): 252-268.
  • 10Murphy S L, Aha D W. UCI repository of machine learning databases [EB/OL]. [2014-9-17]. http:// www.ics.uci.edu/mlearn/MLRepository.Html.

共引文献6

同被引文献105

引证文献12

二级引证文献49

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部