期刊文献+

电压对生物阴极电活性的影响 被引量:1

Effects of the Applied Voltages on the Electroactivity of Methane-producing Biocathode
在线阅读 下载PDF
导出
摘要 为富集高活性的生物阴极和降低微生物电解池的运行成本,分别考察了单室无膜微生物电解池(SCMMEC)中电压与生物阴极活性和溶液COD的关系。结果显示,0.2 V、0.3 V和0.5 V生物阴极的活性水平相当,且相对活性最高的0.3 V生物阴极仍是阴阳极中的电流限制电极。这表明选用稳定性差的廉价电源既可降低SCMMEC的固定成本,又不影响生物阴极的表现。进水COD-外压-电流密度显示,外压的选择还应考虑进水COD,低COD选择较低的外压,反之则相反。 To enrich biocathode having higher activity and decrease the operating cost,the effects of the applied voltages on the electroactivity of biocathode and COD concentration were investigated in glucose-fed SCMMEC,respectively. The results with biocathodes enriched under 0. 2V、0. 3V and 0. 5V showed that: there was no evident difference in electroactivity,and the 0. 3V-biocathodes having the highest electroactivity were still the current-limiting electrodes. This suggested that using power source with lower stability not only could decrease SCMMEC's cost,but also doesn't impact the performance of biocathode. The selection of applied voltage should also consider the influent COD according to the influent COD-applied voltage- current density tests,lower applied voltage for lower COD concentration,and rather than vice versa.
出处 《科学技术与工程》 北大核心 2016年第32期337-341,共5页 Science Technology and Engineering
基金 国家863项目(2012AA06A114) 吉林省教育厅"双十"培育项目(吉教科合[2015]第286号)资助
关键词 产甲烷生物阴极 电活性 单室无膜微生物电解池 电流限制电极 电压 methane-producing biocathode electroactivity single chamber membraneless microbial electrolysis cell current-limiting electrode applied voltage
作者简介 娄军芳,男,博士研究生。研究方向:生态环境系统工程。E-mail:784026872@qq.com。 通信作者:汤洁,女,博士,教授,博士生导师。研究方向:生态环境系统工程。E—mail:tangjie@jlu.edu.cn。
  • 相关文献

参考文献2

二级参考文献34

  • 1张玲,梁鹏,黄霞,郑旭煦.生物阴极型微生物燃料电池研究进展[J].环境科学与技术,2010,33(11):110-114. 被引量:8
  • 2李亮,黄丽,刘燕.城市生活污水厌氧生物处理发展现状[J].环境污染治理技术与设备,2004,5(12):1-6. 被引量:11
  • 3Lovley D. R., Nevin K. P., Curr. Opin. Biotechnol., 2013, 24(3), 385-390.
  • 4Williams J. H., Debenedictis A., Ghanadan R., Mahone A., Moore J., Morrow W. R., Price S., Torn M. S., Science, 2012, 335(6064), 53-59.
  • 5Marshall C. W., Ross D. E., Fichot E. B., Norman R. S., May H. D., Appl. Environ. Microbiol., 2012, 78(23), 8412-8420.
  • 6Van Eerten-Jansen M., Ter Heijne A., Buisman C. J. N., Hamelers H. V. M., Int. J. Energ. Res., 2012, 36(6), 809-819.
  • 7Cheng S., Xing D., Call D. F., Logan B.E., Environ. Sci. Technol., 2009, 43(10), 3953-3958.
  • 8Liu R. R., Wang D. J., Leng J., Chem. Res. Chinese Universities, 2013, 29(4), 747-750.
  • 9Jeremiasse A. W., Hamelers H. V., Buisman C. J., Bioelectrochemistry, 2010, 78(1), 39-43.
  • 10Villano M., Aulenta F., Ciucci C., Ferri T., Giuliano A., Majone M., Bioresour. Technol., 2010, 101(9), 3085-3090.

共引文献11

同被引文献24

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部