期刊文献+

丛枝菌根真菌、磷和生长素对枳侧根形成的调控效应 被引量:4

Regulative Effects of Arbuscular Mycorrhizal Fungus, P and Auxin on the Lateral Root Formation of Poncirus trifoliata
在线阅读 下载PDF
导出
摘要 为探讨丛枝菌根真菌(AMF)、磷水平和生长素对植物侧根形成的影响,在两种磷水平下接种AMF(Rhizophagus irregularis BGC JX04B),施用IBA、生长素运输抑制剂(TIBA),观察AMF、磷水平和生长素对枳Poncirus trifoliata幼苗侧根形成的调控效应。结果表明,AMF对植株生物量及各级侧根数量无显著影响,但显著降低一级侧根长度;磷水平对植株生物量、侧根数量及长度无显著影响;TIBA显著降低植株生物量、侧根数量和侧根长度,而IBA对各项指标无显著影响。AMF和生长素对主根长度的影响存在显著互作;AMF、磷水平和生长素对二级和三级侧根数量的影响存在显著互作。因此,AMF对枳侧根形成的调控可能涉及生长素信号途径,而生长素运输是枳侧根形成的关键因素。 To explore the influence of arbuscular mycorrhizal fungus (AMF), P level and auxin on plant lateral root (LR) formation, AMF strain (Rhizophagus irregularis BGC JX04B) was inoculated to Poncirus trifoliata seedlings at two P levels, which was applied with IBA, TIBA and water as control, and the regulative effects of AMF, P level and auxin on LR formation of trifoliate orange were investigated. The results showed that AMF did not significantly affect the plant biomass and LR number, but significantly decreased the 1^st order LR length. P level did not significantly affect the plant biomass, LR number and length. TIBA significantly decreased the plant biomass, LR number and length, while IBA did not significantly influence these parameters. AMF and auxin showed significant interaction on the primary root length, and AMF, P level and auxin showed significant interaction on the 2^nd and 3^rd order LR number. These data suggested that auxin signaling pathway could be involved in the regulation of AMF and P level on LR formation, and the auxin transportation should be the key factor in LR formation of trifoliate orange.
出处 《亚热带植物科学》 2016年第3期216-220,共5页 Subtropical Plant Science
基金 国家自然科学基金项目(31270448) 广东省高等学校人才引进专项(粤财教[2013]246号)
关键词 丛枝菌根真菌 磷水平 生长素 侧根形成 AMF P level auxin lateral root formation Poncirus trifoliata
作者简介 许朋阳,硕士研究生,从事果树生理与生态研究。E—mail:spyxu@sina.cn 姚青为通讯作者。E-mail:yaoqscau@scau.edu.cn
  • 相关文献

参考文献24

  • 1Smith S E, Read D J. Mycorrhizal Symbiosis[M]. New York: Academic Press, 2010.
  • 2Nouri E, Breuillin-Sessoms F, Feller U, Reinhardt D. Phosphorus and nitrogen regulate arbuscular mycorrhizal symbiosis in Petunia hybrida[J]. PloS One, 2014,9(3): e90841.
  • 3Yao Q, Wang L R, Zhu H H, Chen J Z. Effect of arbuscular mycorrhizal fungal inoculation on root system architecture of trifoliate orange (Poneirus trifoliata L. Raf.) seedlings [J]. Scientia Horticulturae, 2009,121 (4): 458-461.
  • 4Nibau C, Gibbs D J, Coates J C. Branching out in new directions: the control of root architecture by lateral root formation[J]. New Phytologist, 2008,179(3): 595-614.
  • 5Gruber V, Zahaf O, Diet A, de Z61icourt A, de Lorenzo L, Crespi M. Impact of the environment on root architecture in dicotyledoneous plants[M]//de Oliveira A C, Varshney R K. Root Genomics. Berlin: Springer Berlin Heidelberg, 2011: 113-132.
  • 6Li Z, Xu C, Li K, Yan S, Qu X, Zhang J. Phosphate starvation of maize inhibits lateral root formation and alters gene expression in the lateral root primordium zone[J]. BMC Plant Biology, 2012,12(1): 89.
  • 7P6ret B, Desnos T, Jost R, Jost R, Kanno S, Berkowitz O, Nussaume L. Root architecture responses: in search of phosphate[J]. Plant Physiology, 2014,166(4): 1713-1723.
  • 8Lavenus J, Gob T, Roberts I, Guyomarc S, Lucas M, De Smet I, Laplaze L. Lateral root development in Arabidopsis: fifty shades of auxin[J]. Trends in Plant Science, 2013,18(8): 450458.
  • 9Fukaki H, Tasaka M. Hormone interactions during lateral root formation[J]. Plant Molecular Biology, 2009,69(4): 437-449.
  • 10Dinh P T Y, Roldan M, Leung S, McManus M T. Regulation of root growth by auxin and ethylene is influenced by phosphate supply in white clover (Trifolium repens L.)[J]. Plant Growth Regulation, 2012,66(2): 179-190.

二级参考文献50

  • 1Same B I, Robson A D, Abbott L K. Phosphorus, soluble carbohydrates and endomyeorrhizal infection[J]. Soil Biol Brioche, 1983,15 (5) : 593-597.
  • 2Dud s D, Scheck N C. Increased speculation of vesic-ular Arhuscollarm enorrheal fungi by m an ipulation of nutrient regimes[J]. Appl Environ Midrib, 1990, 56:413-418.
  • 3Sykes S R. Chloride and sodium excluding capacities of citrus rootstock germplasm introduced to Australia from the People's Republic of China[J]. Scientia Horticulturae, 2011,128 :443-449.
  • 4Murkute Ashutosh A, Sharma Satyawati, Singh S K, et al. Response of mycorrhizal citrus rootstock plantlets to salt stress[J]. Indian Journal of Horiti- culture,2009,66(4) :456-460.
  • 5Rai M, Acharyad, Singh A, et al. Positive growth responses of the medicinal plants Spilanthescal va and With aniasomnifera to inoculation by Piriformospora indica in a field trial[J]. Mycorrhiza, 2001,11 (3) : 123-128.
  • 6Robson A D, Abbott L K. The effect of soil acidity on microbial activity in soil[M]//Robson A D (ed). Soil acidity and plant growth. Sydney: Academic Press, 1989 : 139-165.
  • 7Habte M, Soedarjo M. Limitation of vesicular-arbus- cular mycorrhizal activity in Leucaena leucocephala by Ca in sufficiency in an acid Mn-richoxisol[J]. My- eorrhiza, 1995, 5(6): 387-394.
  • 8Oehl F, S2?korowi Z, Redecker D, et al. Acaulospora alpina, a new arbuscular mycorrhizal fungal species characteristic for high mountainous and alpine re- gions of the Swiss Alps[J]. Mycologia, 2006 , 98 (2) : 286-294.
  • 9Davis E A, Young J L, Rose S L. Unexpected proge- ny obtained from a glasshouse study of pH influence on Acaulospora laevis inoculum [J]. Plant Soil, 1985,88..281-284.
  • 10Porter W M, Robson A D, Abbott L K. Field survey of the distribution of vesicular-arbuscular mycorrhizal fungi in relation to soil pH[J]. J Appl Ecol, 1987, 24:659-562.

共引文献61

同被引文献197

引证文献4

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部