期刊文献+

基于卡方距离改进的WLAN室内定位算法 被引量:5

Improved WLAN Localization Algorithm Based on Chi-square Distance
在线阅读 下载PDF
导出
摘要 基于WLAN的定位服务现今已成为智慧城市中一个很有吸引力的研究领域。在各种定位算法中,经典欧氏距离法的度量方式只考虑各实际位置点RSS向量之间的绝对距离,往往忽视各实际位置点RSS向量之间的相对距离;并且只能给各AP赋予相同的权重。为克服欧氏距离法的不足,提出了基于卡方距离及灵敏度法的WLAN室内定位方法(CSKNN)。该方法利用位置指纹信息建立参考点的指纹信息和测试点的指纹信息,然后利用更能反映特征量之间相对距离的卡方距离并结合灵敏度法对各AP权重进行修正,得出在当前定位环境中各AP在定位系统中的贡献,用加权后的卡方距离依据各参考点的指纹信息计算待定位点的位置。结果表明,该方法比传统的欧氏距离法精度高。 WLAN-based localization service has become a hotspot for smarter city nowadays. Among the localization algorithms, the clas- sical Euclidean distance solely keeps count of the absolute distance between the RSSI vector and overlooks the relative distance between the RSSI vector. And it can only give the same weight to every AP. In order to overcome the defects of Euclidean distance, a new algo- rithm based on Chi-square distance and sensitivity method for WLAN indoor localization is proposed. The algorithm uses fingerprinting technique to make training dataset and testing dataset,tht;n uses Chi-square distance and sensitivity method to correct the training dataset which will be used in the online localization phase and get the weight of every AP in the algorithm in order to improve positioning accura- cy. The results show that the proposed algorithm has better accuracy compared with the classical Euclidean distance.
作者 陶峥 王洪玉
出处 《计算机技术与发展》 2016年第9期50-55,共6页 Computer Technology and Development
基金 国家自然科学基金资助项目(61172058) 高等学校博士学科点专项科研基金(20120041110011)
关键词 室内定位 无线局域网 位置指纹 卡方距离 灵敏度法 indoor localization WLAN fingerprint Chi--square distance sensitivity method
作者简介 陶峥(1984-),男,工程师,硕士,研究方向为WLAN室内定位技术; 王洪玉,教授,博士研究生导师,研究方向为无线网络。
  • 相关文献

参考文献14

二级参考文献80

  • 1肖玲,李仁发,罗娟.基于非度量多维标度的无线传感器网络节点定位算法[J].计算机研究与发展,2007,44(3):399-405. 被引量:38
  • 2Ng A,Jordan M,Weiss Y.On spectral clustering:analysis and an algorithm[C]//Weiss Y,Scholkopf B,Platt J,eds.Advances in Neural Information Processing Systems (NIPS).Cambridge:MTT Press,2002:857-864.
  • 3Perona P,Malik J.Scale-space and edge detection using anisotropic diffusion[J].IEEE Trans on Pattern Analysis and Machine Intelligence,1990,12(7):629-639.
  • 4Baillard C,Hellier P,Barillot C.Segmentation of brain 3D M R images using level sets and dense registration[J].Medical Image Analysis,2001,5(3):185 -194.
  • 5Kass M,Witkin A,Terzopoulos D.Snakes:active contour models[J].International Journal of Computer Vision,1987,1(4):321 -331.
  • 6Kanungo T,Mount D,Netanyahu N,et al.An efficient kmeans clustering algorithm:analysis and implementation[J].IEEE Trans on Pattern Analysis and Machine Intelligence,2002,24(7):881 -892.
  • 7Gamio J,Belongie S,Majumdar S.Normalized cuts in 3D for spinal MRI segmentation[J].IEEE Trans on Medical Imaging,2004,23(1):36 -44.
  • 8Zelnik ML,Perona P.Self-tuning spectral clustering[C]//Weiss Y,Scholkopf B,Platt J.,eds.Advances in Neural Information Processing Systems (NIPS).Cambridge:MTT Press,2004:1601-1608.
  • 9Wu Zhenyu,Leahy R.An optimal graph theoretic approach to data clustering:theory and its application to image segmentation[J].IEEE Trans on Pattern Analysis and Machine Intelligence,1993,15(11):1101 -1113.
  • 10Shi Jianbo,Malik J.Normalized cuts and image segmentation[J].IEEE Trans on Pattern Analysis and Machine Intelligence,2000,22(8):888 -905.

共引文献116

同被引文献42

引证文献5

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部