期刊文献+

多相似测度稀疏表示的高光谱影像分类 被引量:1

Sparse Representation Classification of Hyperspectral Image Based On Similarity Indices
在线阅读 下载PDF
导出
摘要 针对当前高光谱影像稀疏分类模型中光谱重构方法单一性的问题,该文将稀疏分类模型中光谱的线性重构理解为光谱间的相似性度量,进而引入其他相似性测度指标,提出多相似测度稀疏表示的高光谱影像分类模型,并给出模型的统一解算方法——一般正交匹配追踪算法;随后,考虑地物空间连续性和一致性,将多相似测度稀疏分类模型扩展到空间联合的多相似测度稀疏分类模型,提出了一般联合匹配追踪算法;最后,利用两幅标准高光谱影像数据验证了所提出的多相似测度稀疏分类模型对于高光谱影像分类的有效性和实用性。 In this paper, according to the spectral similarity of hyperspectral images and sparse representation, a novel framework of sparse representation classification model was proposed based on the general spectral similarity indices, such as spectral angle mapping (SAM) , spectral information divergence (SID) , spectral structure similarity index (SSIM) and so on. Then we presented a general algorithm called GOMP, inspired by the Orthogonal Matching Pursuit (OMP) algorithm. After that,considering the spatial features of the ground objects, we developed the GSRC to the joint GSRC model (GJSRC) and also extended the GSOMP algorithm to solve the proposed model. Finally,we demonstrated the practicality and effectiveness of the proposed algorithm through experiment of a real-world hyperspectral image data.
作者 朱勇 吴波
出处 《遥感信息》 CSCD 北大核心 2016年第4期9-15,共7页 Remote Sensing Information
基金 福建省科技重点项目(2015J01163)
关键词 相似性指标 稀疏表示 高光谱影像 OMP算法 稀疏分类 spectral similarity indices sparse representation hyperspectral image OMP SRC
作者简介 朱勇(1989-),男,硕士研究生,研究方向为遥感影像分类.E-mail:zhuyongfz@126.com 通信作者:吴波(1975-),男,教授,博士后,主要从事遥感图像处理及时空数据挖掘等方面研究.E-mail:wavelet778@sohu.com
  • 相关文献

参考文献2

二级参考文献31

  • 1Chan J C W and Paelinckx D. Evaluation of random forest and adaboost tree-based ensemble classification and spectral band selection for ecotope mapping using airborne hyperspectral imagery[J]. Remote Sensing of Environment, 2008, 112(6): 2999-3011.
  • 2Shahshahani B M and Landgrebe D A. The effect of unlabeled samples in reducing the small sample size problem and mitigating the hughes phenomenon[J]. IEEE Transactions on Geoscience and Remote Sensing, 1994, 32(5) 1087-1095.
  • 3Breiman L. Random forests [J]. Machine Learning, 2001, 45(1): 5-32.
  • 4Wright J, Ma Y, Mairal J, et al. Sparse representations for computer vision and pattern recognition [J]. Proceedings of the IEEE, 2010, 98(6): 1031-1044.
  • 5Raina R, Battle A, Lee H, et al. Self-taught learning: transfer learning from unlabeled data[C]. International Conference on Machine Learning, Corvallis, 2007: 759-766.
  • 6Qiao Li-shan, Chen Song-can, and Tan Xiao-yang. Sparsity preserving projection with applications to face recognition [J] Pattern Recognition, 2010, 43(1): 331-341.
  • 7Han Ya-hong, Wu Fei, Zhuang Yue-ting, et al. Multi-label transfer learning with sparse representation[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2010, 20(8): 1110-1121.
  • 8Aharon M, Elad M, and Bruckstein A. K-SVD: an algorithm for designing over-complete dictionaries for sparse representation [J]. IEEE Transactions on Signal Processing, 2006, 54(11): 4311-4322.
  • 9Mairal J, Bach F, Ponce J, ct al.. Online learning for matrix factorization and sparse coding [J]. Journal of Machine Learning Research, 2010, 11(1): 19-60.
  • 10Breiman L. Bagging predictors [J]. Machine Learning, 1996, 24(2): 123-140.

共引文献81

同被引文献9

引证文献1

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部