期刊文献+

基于局部敏感判别分析的路网状态特征提取模型研究 被引量:3

Feature Extraction Model of Urban Traffic Network Data Based on Locality Sensitive Discriminant Analysis Algorithm
在线阅读 下载PDF
导出
摘要 为简化路网状态表达,最大限度地实现路网信息增值,本文构建了从海量历史交通数据中提取特征参量来表达路网运行状态的模型.模型选取城市区域路网的流量、车速和密度数据,综合考虑交通数据的非线性和相关性,基于自适应邻域选择的局部敏感判别分析算法,实现城市路网数据特征提取.通过实例验证了模型的有效性.结果表明:本文得到的特征参量能有效地描述路网状态变化的24 h周期性,可直观反映早晚高峰现象及工作日与周末的区别性;与核主成分分析算法比较,模型得到的特征参量具有可分性更好的特点,可以表达宏观路网运行状态,为交通管理者提供决策依据. To simplify the way of expressing road network state and maximize the value of network information, this paper constructs a model of extracting feature parameter from massive historical traffic data to express road network running state. In this model, the flow, speed and density data of road network in urban areas are selected, considering the nonlinearity and correlation of traffic data, the feature of urban road network data is extracted based on adaptive neighborhood selection of local sensitive discriminant analysis algorithm (ANS-LSDA). Examples demonstrate the effectiveness of the model, results show that feature parameter obtained in this paper can effectively describe the road network 24 h periodicity, directly reflect the phenomenon of morning and evening peak as well as the difference between weekday and weekend. Compared to kernel principal component analysis (KPCA), the feature parameter of ANS-LSDA model has better divisibility, which can express macro road network running state and provide basis for traffic managers in decision making.
出处 《交通运输系统工程与信息》 EI CSCD 北大核心 2016年第3期95-100,共6页 Journal of Transportation Systems Engineering and Information Technology
基金 国家自然科学基金(51308021)~~
关键词 城市交通 特征提取 局部敏感判别分析 路网状态 自适应邻域选择 urban traffic feature extraction locality sensitive discriminant analysis state road network adaptive neighborhood selection~:2015-11-09 ~1~]:2016-01-06~j^B~]:2016-01-25
作者简介 徐丽香(1990-),女,山东日照人,硕士生. 通信作者:hyyu@buaa.edu.cn
  • 相关文献

参考文献7

  • 1CHEN Y D, ZHANG Y, HU J, et al. Pattern discovering of regional traffic status with self-organizing maps[C] // IEEE Intelligent Transportation Systems Conference, 2006, ITSC06, 2006: 647- 652.
  • 2赵志强,张毅,胡坚明.基于GTM-中文版权目录TT算法的城市区域交通状态分析[J].吉林大学学报(工学版),2009,39(S2):1-6. 被引量:1
  • 3QI C, HU J M, ZHANG Y, et al. Feature extraction of urban traffic network data based on local tangent space alignment[C] //Proceedings of 6th International Conference on Networked Computing, 2010:280-285.
  • 4MA X L, YU H Y, WANG Y P, et al. Large- scale transportation network congestion evolution prediction using deep learning theory[J]. PLOS, 2015, DOI:10.1371/journal.pone.0119044.
  • 5CAI D, HE X F, ZHOU K, et al. Locality sensitive discriminant analysis[C]//Proceedings of 2007 International Joint Conference on Artificial Intelligence(IJCAI’07), Hyderabad, India, 2007, IJCAI- 07:708-713.
  • 6詹宇斌,殷建平,刘新旺,张国敏.流形学习中基于局部线性结构的自适应邻域选择[J].计算机研究与发展,2011,48(4):576-583. 被引量:11
  • 7QU L, HU J M, ZHANG Y. A flow volumes data compression approach for traffic network based on principal component analysis[C] //Proceedings of the 2007 IEEE Intelligent Transportation Systems Conference, Seattle, WA, USA: IEEE Omni press, 2007:125-130.

二级参考文献28

  • 1姜桂艳,郭海锋,吴超腾.基于感应线圈数据的城市道路交通状态判别方法[J].吉林大学学报(工学版),2008,38(S1):37-42. 被引量:29
  • 2罗四维,赵连伟.基于谱图理论的流形学习算法[J].计算机研究与发展,2006,43(7):1173-1179. 被引量:76
  • 3邵超,黄厚宽,赵连伟.一种更具拓扑稳定性的ISOMAP算法[J].软件学报,2007,18(4):869-877. 被引量:20
  • 4Jolliffe I T. Principal Component Analysis [M]. New York: Springer, 1989.
  • 5Cox T F, Cox M A A. Multidimensional Scaling [M]. Florida:Chapman and Hall, 1994.
  • 6Duda R O, Hart P E, Stork D G. Pattern Classification [M]. New York: John Wiley & Sons, 2001.
  • 7Tenenbaum J B, Silva V D, Langford J C. A global geometric framework for nonlinear dimensionality reduction[J]. Science, 2000, 290(5500):2319-2323.
  • 8Roweis S T, Saul L K. Nonlinear dimensionality reduction by locally linear embedding[J]. Science, 2000, 290(5500) : 2323-2326.
  • 9Donoho D L, Grimes C. Hessian eigenmaps: Locally linear embedding techniques for high-dimensional data [J]. Proc of the National Academy of Sciences of USA, 2003, 100(10): 5591-5596.
  • 10Zhang Z, Zha H. Principal manifolds and nonlinear dimension reduction via local tangent space alignment [J]. SIAM Journal. Scientific Computing, 2005, 26(1):313-338.

共引文献10

同被引文献18

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部