期刊文献+

基于随机森林模型的陆地卫星-8遥感影像森林植被分类 被引量:65

Forest Vegetation Classification of Landsat8 Remote Sensing Image Based on Random Forests Model
在线阅读 下载PDF
导出
摘要 以黑龙江省漠河县为研究区域,采用陆地卫星-8遥感影像为数据源,结合影像的光谱信息和数字高程模型辅助数据,分别采用最大似然分类法(MLC)和随机森林模型法(RFM)对研究区森林植被进行分类,并分析和评价光谱特征变量对模型的重要性、2种分类方法对森林植被类型分类的适用性。结果表明:随机森林分类方法的总体分类精度为81.65%、卡帕(Kappa)系数为0.812。与传统的MLC方法相比,RFM法均提高了3种森林类型的生产者精度和使用者精度,其中针阔混交林精度提高最多。通过分析特征变量的重要性,发现高程、归一化植被指数、红光波段、近红外波段、短波红外波段对模型分类精度有较重要的影响。说明随机森林模型方法结合多源信息是森林植被类型遥感分类的一种有效手段。 Taking Mohe County of Heilongjiang Province as study area,with the Landsat8 remote sensing images as data source,and the spectral signatures of the image and DEM as additional data,we classified the types of forest vegetation based on classification method of the Maximum Likelihood Classifier( MLC) and random forest model( RFM). We analyzed the importance of the characteristics variables of the spectral for the model,and evaluated the suitability of two methods in forest vegetation classification. The overall classification accuracy and the Kappa coefficient of RFM were 81.65% and 0.812,respectively. Compared with the MLC method,the RFM method improved the user accuracy and production accuracy for three forest types. By analyzing the importance of the variables,elevator,NDVI,red band,NIR band,and short wave IR band played an important role in classification accuracy. Therefore,the RFM based on multiply types of data is a fast and effective method in the classifications of forest vegetation types.
机构地区 东北林业大学
出处 《东北林业大学学报》 CAS CSCD 北大核心 2016年第6期53-57,74,共6页 Journal of Northeast Forestry University
基金 科技部科技基础性工作专项项目(2013FY111600-7)
关键词 随机森林模型法 陆地卫星-8遥感影像 森林植被分类 Random forest model(RFM) Landsat8 remote sensing image Forest vegetation classification
作者简介 张晓羽,女,1989年2月生,东北林业大学林学院,硕士研究生。E—mail:949205203@qq.com。 通信作者:赵颖慧,东北林业大学林学院,副教授,E-mail:zyinghui0925@126.com。
  • 相关文献

参考文献22

  • 1BERIMAN L.Random forests[J].Machine Learning,2001,45(1):5-32.
  • 2PAL M.Random forest classifier for remote sensing classification [J].International Journal of Remote Sensing,2005,26(1):217-222.
  • 3GISLASON P O,BENEDIKTSSON J A,SVEINSSON J R.Ran- dom forests for land cover classification[J].Pattern Recognition Letters,2003,27(4):294-300.
  • 4CAO L,COOPS N C,INNES J L,et al.Tree species classifica- tion in subtropical forests using small-footprint full-waveform LI- DAR data[J].International Journal of Applied Earth Observation and Geoinformation,2016,49:39-51.
  • 5JUEL A,GROOM G B,SVENNING J C,et al.Spatial application of Random Forest models for fine-scale coastal vegetation classifi- cation using object based analysis of aerial orthophoto and DEM data[J].International Journal of Applied Earth Observation and Geoinformation,2015,42:106-114.
  • 6OTHMANI A,VOON L F C L Y,STOLZ C,et al.Single tree species classification from Terrestrial Laser Scanning data for forest inventory[J].Pattern Recognition Letters,2013,34(16):2144-2150.
  • 7DALPONTE M,BRUZZONE L,G1ANELLE D.Tree species clas- sification in the Southern Alps based on the fusion of very high ge- ometrical resolution multispectral/hyperspectral images and LiDAR data[J].Remote Sensing of Environment,2012,123(3):258-270.
  • 8IMMJTZER M,ATZBERGER C,KOUKAL T.Tree Species Clas- sification with Random Forest Using Very High Spatial Resolution 8-Band WorldView-2 Satellite Data[J].Remote Sensing,2012,4(9):2661-2693.
  • 9RODRIGUEZ-GALIANO V F,CHICA-OLMO M,ABARCA- HERNANDEZ F,et al.Random Forest classification of Mediterra- nean land cover using multi-seasonal imagery and multi-seasonal texture[J].Remote Sensing of Enviroment ,2012,121:93-107.
  • 10KODRIGUEZ-GALIANO V F,GHIMIRE B,ROGAN J,et al.An assessment of the effectiveness of a random forest classifier for land-cover classification[J].ISPRS Journal of Photogrammetry and Remote Sensing,2012,67(1):93-104.

二级参考文献96

共引文献926

同被引文献890

引证文献65

二级引证文献462

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部