期刊文献+

利用X射线衍射和拉曼光谱法对KCl和NaCl混合溶液微观结构的研究 被引量:4

Study of the Hydrated Structure of KCl and Na Cl Mixed Solutions Using X-ray Diffraction and Raman Spectroscopy
在线阅读 下载PDF
导出
摘要 利用X射线衍射法和拉曼光谱法系统研究了25°C下,0-26%质量分数浓度范围内KCl和NaCl混合溶液的结构。通过分析X射线衍射法所得的混合溶液的差值结构函数F(Q)以及差值对分布函数G(r)发现,混合溶液组分中的K^+的水化层半径及其水化数均大于Na~^+,从而揭示出常温下NaCl在水中的溶解度大于KCl的原因。在拉曼光谱的研究中,观察到溶液中水分子的四面体氢键受破坏程度随KCl浓度的增加和NaCl浓度的减少,先增大后减小,并结合X射线衍射法的结果,推断混合溶液中Na^+对水溶液中氢键结构的破坏程度比K^+严重,且加入适量的K^+会使Na^+由结构缔造者转变为打破结构者,对水溶液结构的破坏增强。 Research on the hydrated structure of KCl and Na Cl mixed solutions with a concentration range between 0 and 26% was conducted using X-ray diffraction and Raman spectroscopy at 25 ℃. Their reduced structure functions, F(Q), and reduced pair distribution functions, G(r), obtained from X-ray diffraction indicate that compared with Na+, the hydration numbers and shell radii of the hydrated K+ions are larger. This explains why the solubility of Na Cl is higher than that of KCl at 25 ℃. According to the Raman spectroscopy, the tetrahedral hydrogen bonds of water molecules will be destroyed with the increase in KCl concentration and the decrease in Na Cl concentration. The extent of the bond destruction has systematic variations; for example,increasing at first and then decreasing. These results show that the destruction of the hydrogen bond structure resulting from Na+is more serious than from K^+. Also, with the appropriate K^+content in the Na Cl solution, Na^+will behave as a structure breaker instead of a structure maker, which enhances the destructiveness of the solution structure.
出处 《物理化学学报》 SCIE CAS CSCD 北大核心 2016年第5期1143-1150,共8页 Acta Physico-Chimica Sinica
基金 河北省重点基础研究项目(13963103D) 长江学者和创新团队发展计划(IRT14R14) 国家科技支撑计划项目(2015BAB09B00)资助~~
关键词 X射线衍射 拉曼光谱 KCL NACL 溶液结构 X-ray diffraction Raman spectroscopy Potassium chloride Sodium chloride Solution structure
作者简介 Corresponding author. Email: jsyuan2012@126.com; Tel: +86-22-60204598.
  • 相关文献

参考文献27

  • 1Smirnova, P. R.; Grechinb, O. V.; Trostina, V. N. Russ. J. Phys. Chem. A 2014, 88, 250. doi: 10.1134/S0036024414020253.
  • 2Brady, G. W.; Krause, J. T. d~ Phys. Chem. 1957, 27, 304. doi: 10.1063/1.1743691.
  • 3Terekhova, D. S.; Ryss, A. I.; Radchenko, I. V. J. Struct. Chem. 1969, 10, 807. doi: 10.1007/BF00743973.
  • 4Fishkis, M. Y.; Soboleva, T. E. a~ Struct. Chem. 1974, 15, 175. doi: 10.1007/BF00746552.
  • 5Neilson, G. W.; Skipper, N. Chem. Phys. Lett. 1985, 114, 35. doi: 10.1016/0009-2614(85)85050-8.
  • 6Tongraar, A.; Liedl, K. R.; Rode, B. M. ,Z Phys. Chem. A 1998, 102, 10340. doi: 10.1021/jp982270y.
  • 7Azam, S. S.; Hofer, T. S.; Randolf, B. R.; Rode, B. M. 3i Phys. Chem. A 21109, 113, 1827. doi: 10.1021/jp8093462.
  • 8Ramaniah, L. M.; Bernasconi, M.; Parrinello, M..Z Chem. Phys. 1999, 111, 1587. doi: 10.1063/1.479418.
  • 9Liu, Y.; Lu, H. G.; Wu, Y. B.; Hu, T. P.; Li, Q. L. J. Chem. Phys. 2010, 132, 124503. doi: 10.1063/1.3369624.
  • 10Hars~nyi, I.; Bopp, P. A.; Vrhov~ek, A.; Pusztai, L. J. Mol. Liq. 2011, 158, 61. doi: 10.1016/j.molliq.2010.10.010.

二级参考文献69

共引文献20

同被引文献30

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部