期刊文献+

基于信息密度的微博突发话题检测模型研究 被引量:5

Research on the Microblog Bursty Topic Detection Model Based on Information Density
在线阅读 下载PDF
导出
摘要 在分析当前微博突发话题检测模型存在的问题的基础上,提出了基于信息密度的新型检测模型MBID。该模型通过动态滑动窗口采集微博信息流,以话题树进行信息归纳,并最终通过窗口和话题树的信息密度变化进行监测,发现突发话题,并从主题树中抽取描述词。仿真实验表明,MBID模型较之其他两种模型,具有较高的检测精度、全面性和较高的处理效能。 Based on the analysis of the existing problems of the present microblog bursty topic detection model, this paper puts forward a novel detection model based on information density. The MBID model uses dynamic sliding windows to get microblog infor- mation flows and summarizes information through topic trees. Finally, the paper detects and discovers topic through the information density of windows and topic trees, and extracts the description words from topic trees as well. The simulation results show that MBID has better detection accuracy, coverage and processing performance than the other two traditional models.
出处 《情报理论与实践》 CSSCI 北大核心 2016年第3期125-129,共5页 Information Studies:Theory & Application
基金 国家社会科学基金青年项目"群体性事件管理推演与应对措施验证研究"的成果 项目编号:14CGL050
关键词 突发话题 微博 信息密度 检测 bursty topic mico-blog information density detection
作者简介 王征,男,1979年生,博士,副教授。研究方向:图书馆信息化等。 王林森,男,1978年生,博士生。研究方向:信息管理等。 赵磊,男,1979年生,博士,助理研究员。研究方向:群体管理。
  • 相关文献

参考文献17

  • 1ZHANG Xiaoming, et al. Event detection and popularity predic- tion in microblogging [ J ]. Neurocomputing, 2015, 149 (3) : 1469-1480.
  • 2GUPTA M, GAO J, ZHAI Chengxiang, et al. Predicting future popularity trend of events in microblogging platforms [ J ]. In- formation Science and Technology, 2012, 49 (1) : 1-10.
  • 3ZHAO Jie, WANG Xueya, MA Zheng. Towards events detection from microblog messages [ J ]. International Journal of Hybrid Information Technology, 2014, 7 (1): 201-210.
  • 4LEE Chung-Hong, CHIEN Tzan-Feng. Leveraging microblogging big data with a modified density-based clustering approach for e- vent awareness and topic ranking [ J ]. Journal of Information Science, 2013, 39 (4): 523-543.
  • 5ZHOU Zhenyu, LI Fang. Topic Study of Mieroblog Based on Specific Events [ J ]. Applied Mechanics and Materials, 2013, 347 (1) : 2625-2630.
  • 6ATEFEH F, KHREICH W. A survey of techniques for event detection in Twitter [ J]. Computational Intelligence, 2015, 31 (1): 132-164.
  • 7KALEEL S B, ABHARI A. Cluster-discovery of Twitter messa- ges for event detection and trending [J]. Journal of Computa- tional Science, 2015, 6 (3): 47-57.
  • 8GUILLE A, FAVRE C. Event detection, tracking, and visual- ization in Twitter: a mention-anomaly-based approach [ J ]. Social Network Analysis and Mining, 2015, 5 (1): 103-121.
  • 9AO Ji, ZHANG Peng, CAO Yanan. Estimating the locations of emergency events from Twitter streams [ J]. Procedia Comput- er Science, 2014, 31 (1): 731-739.
  • 10SALEEM H M, XU Yishi; RUTHS D. Effects of disaster char- acteristics on Twitter event signature [ J]. Procedia Engineer- ing, 2014, 78 (1) : 165-172.

二级参考文献68

  • 1吴江宁,王桂才.文本聚类分析结果可视化方法研究[J].情报学报,2011,30(2):115-120. 被引量:7
  • 2王永恒,贾焰,杨树强.基于频繁词集聚类的海量短文分类方法[J].计算机工程与设计,2007,28(8):1744-1746. 被引量:6
  • 3王永恒,贾焰,杨树强.海量短语信息文本聚类技术研究[J].计算机工程,2007,33(14):38-40. 被引量:13
  • 4Gruhl D, Nowell D L, Guha R, et al. Information Diffusion Through Blogspace[J]. ACM SIGKDD Explorations Newsletter, 2004,6(2) :43-52.
  • 5Qamra A, Tseng B, Chang E Y. Mining Blog Stories Using Community-Based and Temporal Clustering[C]//Proc of the 15th ACM Int'l Conf on Information and Knowledge Management, 2006 : 58-67.
  • 6Li Xiaoyan, Croft W B. Time-Based Language Models[C]// Proc of the 12th Int'l Conf on Information and Knowledge Mmanagement, 2003:469-475.
  • 7Diaz F, Jones R. Using Temporal Profiles of Queries for Precision Prediction[C]//Proc of the 27th Annual Int' l ACM SIGIR Conf on Research and Development in Information Retrieval, 2004:18-24.
  • 8Jones R, Diaz F. Temporal Profiles of Queries[J]. ACM Trans on Information Systems, 2007,25(3) : 14.
  • 9Steve C-T, Zhou Yun, Croft W B. Predicting Query Performance[C]//Proc of the 25th Annual Int'l ACM SIGIR Conf on Research and Development in Information Retrieval, 2002 : 299-306.
  • 10Macdonald C, Ounis I. The TREC Blogs06 Collection : Creating and Analysing a Blog Test Collection[R]. Technical Report TR-2006-224, Department of Computer Science, University of Glasgow, 2006.

共引文献74

同被引文献36

引证文献5

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部