期刊文献+

基于用户聚类的异构社交网络推荐算法 被引量:125

User Clustering Based Social Network Recommendation
在线阅读 下载PDF
导出
摘要 相比传统的社交网络,基于弱关系的微博类社交网络具有显著的异构特征.根据特征可以将节点分为用户(消息订阅者)和主题(消息发布者)两类,面向用户推荐其感兴趣的主题成为了该类社交网络中推荐系统的主要目标之一,同时该类社交网络中普遍存在的数据稀疏性和冷启动现象成为了推荐系统面临的主要问题.文中提出一种基于两阶段聚类的推荐算法GCCR,将图摘要方法和基于内容相似度的算法结合,实现基于用户兴趣的主题推荐.与以往方法相比,该方法在稀疏数据和冷启动的情况下具有更好的推荐效果,此外,通过对数据集进行大量的离线处理,使得其较以往推荐方法具有更好的在线推荐效率.最后通过真实社交网络的数据对本方法进行了验证,同时分析了各参数对推荐效果的影响. Comparing to the ordinary social networks services (SNS), the twitter-like weak- relationship based social networks are observably heterogeneous. By classifying the nodes into users (subscriber) and subjects (publisher), the goal of recommendation systems over this kind of networks is basically recommending the subjects to the users for subscription. Moreover, the data sparseness and cold-start scene always exists in these microblog networks. In this paper, we propose GCCR, a hybrid method combining both graph-summarization and content-based algo- rithms by a two-phase user clustering approach, which can recommend subjects according to user interests. With respect to other methods, the GCCR algorithm could generate better recommen- dation result in sparse datasets and cold-start scenarios. In additional, by separating the task into offline and online parts, GCCR works more efficiently online by using the pre-processed offline results. We use real data set from existing social networks to evaluate GCCR along with base-line methods. Moreover, an analysis of the parameters is given for evaluating their impacts on recommendation results.
出处 《计算机学报》 EI CSCD 北大核心 2013年第2期349-359,共11页 Chinese Journal of Computers
基金 国家科技支撑计划项目基金(2011BAH16B04) 国家自然科学基金(61173176) 浙江省科技项目(2008C03007) 国家"八六三"高技术研究发展计划项目基金(2011AA010501)资助
关键词 社交网络 推荐系统 聚类算法 图摘要 数据挖掘 social network recommendation system clustering graph summarization data mining
作者简介 陈克寒,男,1987年生,硕士研究生,主要研究方向为服务计算、数据挖掘.E—mall:metalgear@zju.edu.cn. 韩盼盼,女,1989年生,硕士研究生,主要研究方向为服务计算、数据挖掘、社会计算. 吴健,男,1975年生,博士,副教授,主要研究方向为Web服务、语义Web、数据挖掘.
  • 相关文献

参考文献14

  • 1Chen J, Geyer W, Dugan C, Muller M, Guy I. Make new friends, but keep the old: Recommending people on social networking sites//Proceedings of the 27th International Conference on Human Factors in Computing Systems. New York, NY, USA, 2009 201-210.
  • 2Sarwar B M, Karypis G, Konstan J A, Riedl John. Analysis of recommendation algorithms for e-commerce//Proceedings of the 2nd ACM Conference on Electronic Commerce (EC-00). Minneapolis, MN, USA, 2000:158 167.
  • 3Linden Greg, Smith Brent, York Jeremy, Amazon. com recommendations: Item-to-item collaborative filtering. IEEE Internet Computing, 2003, 7(1): 76-80.
  • 4Pazzani M J, Billsus D. Content based recommendation systems//Brusilovsky P et al eds. The Adaptive Web. Springer Verlag, 2007:325 341.
  • 5Mislove Alan, Marcon Massimiliano, Gummadi Krishna P, Druschel Peter, Bhattacharjee Bobby. Measurement and analysis of online social networks//Proceedings of the 7th ACM SIGCOMM Conference on Internet Measurement. San Diego, CA, USA, 2007:29 /i2.
  • 6Piao Scott, Whittle Jon. A feasibility study on extracting twitter users' interests using NLP tools for serendipitous connections//Proceedings of the 3rd IEEE International Conference on Social Computing (SocialCom 2011). Boston, MA, 2011= 910 915.
  • 7Sakaguchi T, Akaho Y, Takagi T, Shintani T. Recommen dations in twitter using conceptual {uzzy sets//Proceedings of the 2010 Annual Meeting of the North American Fuzzy lnfor mation Processing Society (NAFIPS). Toronto, Canada, 2010:1 6.
  • 8Granovetter M. The strength of weak ties. American Journal of Sociology, 1973, 78(6).- 1360 1380.
  • 9Harmon John, Bennett Mike, Smyth Barry. Recommending twitter users to follow using content and collaborative filte ring approaches//Proceedings of the 4th ACM Conference on Recommender Systems ( RecSys ' 10 ). Barcelona, Spain, 2010, 199 206.
  • 10Kim Younghoon, Shim Kyuseok. TWITOB| A recommen dation system for twitter using probabilistic modeling//Pro ceedings of the 2011 IEEE llth International Conference on Data Mining(ICDM). Vancouver, Canada, 2011 340 349.

同被引文献1093

引证文献125

二级引证文献757

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部