期刊文献+

生物转化高浓度甘油生产1,3-二羟基丙酮及分批发酵动力学

Biotransformation of high-concentration glycerol into 1,3-dihydroxyacetone and batch fermentation dynamics
在线阅读 下载PDF
导出
摘要 以生物柴油生产的高浓度副产物甘油为唯一碳源筛选甘油高耐受性1,3-二羟基丙酮(DHA)高产菌株,运用响应面与正交试验优化菌株产DHA条件,提高DHA产量。分子生物学鉴定表明:筛选的高产DHA菌种G40为芽胞杆菌属(Bacillus)菌株,DHA产量为29.46g/L。响应面分析和正交试验优化后,在甘油224.22g/L、K_2HPO_41.60g/L、NaCl0.5g/L、KH_2PO_40.5g/L、(NH_4)_2SO_40.5g/L、酵母膏1.60g/L和pH7.2、35℃、200r/min的条件下,G40菌株发酵60h产生DHA86.84g/L,比优化前提高了194.8%。实验建立了一种利用高浓度甘油高效率发酵生产DHA的方法。 High-concentration glycerol was used as the sole carbon source to select the bacteria that can also produce 1,3-dihydroxyacetone( DHA) efficiently.Then,response surface and orthogonal experiments were applied to optimize the DHA's medium component and culture conditions to improve the output. The most efficient DHA producing strain was Bacillus as shown by 16 S rRNA homology analysis,with a DHA output of 29. 46 g / L. After the optimization of response surface and orthogonal experiments,strain G40 produced 86. 84 g / L DHA in 60 hours with 224. 22 g / L glycerol,1. 60 g / L K_2HPO_4,0. 5 g /L NaCl,0. 5g / L KH_2PO_4,0. 5 g /L( NH_4)_2SO_4,1. 60 g /L yeast extract under pH 7. 2,35 ℃ and 200 r/min,which had improved 194. 8% compared with the output before the optimization. The result of the experiment established an efficient DHA producing bio-method.
出处 《生物加工过程》 CAS 2016年第1期36-43,共8页 Chinese Journal of Bioprocess Engineering
基金 国家自然科学基金(50978164)
关键词 1 3-二羟基丙酮 菌种筛选 甘油 发酵动力学 1 3-dihydroxyacetone bacterias separation glycerol fermentation dynamics
作者简介 李英东(1993-),男,甘肃省兰州人,研究方向:生物技术; 陈军(联系人),副教授,E-mail:cj7206@shnu.edu.cn
  • 相关文献

参考文献19

  • 1ZELIKIN A N, PUTNAM D. Poly (carbonate-acetal) s from the dimer form of dihydroxyacetone [ J ]. Macromolecules, 2005, 38 (13) :5532-5537.
  • 2MISHRA R, JAIN S R, KUMAR A. Retracted: microbial production of dihydroxyaeetone [ J ]. Bioteehnol Adv, 2008, 26 (4) :293-303.
  • 3HEKMAT D, BAUER R, FRICKE J.Optimization of the microbial synthesis of dihydroxyacetone from glycerol with Gluconobacter oxydanz [ J ].Bioproc Biosyst Engineer, 2003,26 (2) : 109-116.
  • 4ENDERS D ,VOITH M ,LENZEN A.The dihydroxyacetone unit-a versatile C3 building block in organic synthesis [J] .Angew Chem Int Ed,2005,44(9) :1304-1325.
  • 5DA SILVA G P, MACK M, CONTIERO J. Glycerol : a promising and abundant carbon source for industrial microbiology [ J ]. Biotechnal Adv, 2009,27 ( 1 ) : 30-39.
  • 6MORALES M, DAPSENS P Y, GIOVINAZZO I, et al.Environmental and economic assessment of lactic acid production from glycerol using cascade bio and chemocatalysis [ J ]. Energ Envir Sci,2015,8(2) :558-567.
  • 7ROCHA-MARTIN J, ACOSTA A, GUISAN J M, et al. Immobilizing systems biocatalysis for the selective oxidation of glycerol coupled to in situ cofactor recycling and hydrogen peroxide elimination [ J ]. Chem Cat Chem, 2015, 10 ( 2 ) : 1939-1947.
  • 8HARA M, NAKAJIMA K, KAMATA K. Recent progress in the development of solid catalysts for biomass conversion into high value-added chemicals [ J ]. Sci Technol Adv Mat, 2015, 16 (3) : 034903.
  • 9YAMADA S, NABE K, IZUO N, et al. Enzymatic production of dihydroxyacetone by Acetobacter suboxydans ATCC 621 [ J ]. J Ferment Technol (Japan), 1979,51:221-225.
  • 10游庆红,戴小燕,朱宏阳,徐虹.氧化葡萄糖酸杆菌驯化选育及其产二羟丙酮[J].南京工业大学学报(自然科学版),2012,34(1):10-14. 被引量:3

二级参考文献61

共引文献65

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部