期刊文献+

基于图像显著性检测的图像分割 被引量:16

Image segmentation based on saliency detection
在线阅读 下载PDF
导出
摘要 图像分割在许多图像处理和机器视觉问题中是一个非常重要的过程,是将一幅图分割成几个显著的区域,然而不能将其中最显著的目标直接分割出来,需要进一步处理。为此本文采用显著性检测的算法实现了对目标的分割。显著性区域检测可以应用于目标检测、图像检索、图像分割等机器视觉问题。使用杨等人提出的基于图论的流形排序算法检测显著性算法得到显著性图,再结合mean-shift分割算法,实现了对视觉显著性目标分割提取,可获得可观的图像分割结果,并将此算法应用到了森林火灾检测中,能对图像中的火焰部分进行有效的分割提取。 Image segmentation, the process of breaking a given image into salient regions, is an important process in many image processing and computer vision problems. However, it cannot get the most salient region, which should be handled further. A saliency detection algorithm is therefore applied to support image segmentation. Saliency detection can be applied to many computer vision problems, such as object detection, image retrieval, and image segmentation. We segment the salient object by the saliency detection algorithm via graph-based manifold ranking algorithm proposed by Yang et al combined with the mean-shift segmentation algorithm. Experimental results show that the results are impressive and this algorithm can be applied to forest fire detection, in which the fire part in the image can be segmented effectively.
出处 《计算机工程与科学》 CSCD 北大核心 2016年第1期144-147,共4页 Computer Engineering & Science
关键词 显著性检测 图像分割 流形排序 火焰检测 saliency detection image segmentation manifold ranking fire detection
作者简介 刘志伟(1990-),男,湖南湘乡人.硕士,研究方向为图像处理。E-mail:lzhw90@163.com
  • 相关文献

参考文献9

  • 1Liu T,Yuan Z,Sun J,et al. Learning to detect a salient ob- ject[J]. IEEEPAMI,2011,33(2):353-367.
  • 2Wang L,Xue J, Zheng N, et al. Automatic salient object ex- traction with contextual cue[C]//Proc of IEEE International Conference on Computer Vision, 2011 : 105-112.
  • 3Harel J,Koch C,Perona P. Graph-based visual saliency[C] //Proe of NIPS, 2006 : 545-552.
  • 4Zhai Y, Shah M. Visual attention detection in video se- quences using spatiotemporal eues[C]//Proe of ACM Multi- media, 2006 : 815-824.
  • 5Yang C,Zhang L, Lu H,et al. Saliency detection via graph- based manifold ranking[-C] ff IEEE Conference on Computer Vision and Pattern Recognition,2013:3166-3173.
  • 6Zhou D, Weston J,Gretton A,et al. Ranking on data mani- folds[C]//Proe of NIPS,2003: 169-176.
  • 7Achanta R,Smith K, Luechi A, et al. Slic superpixels: Tech- nical report,149300[R]. [S. 1. :s. n. ]. 2010.
  • 8Comanieiu D,Meer P. Mean Shift:A robust approach toward feature space analysis[J]. IEEE Transactions on Pattern A- nalysis & Machine Intelligence, 2002, 24(5):603-619.
  • 9杨俊,王润生.基于计算机视觉的视频火焰检测技术[J].中国图象图形学报,2008,13(7):1222-1234. 被引量:26

二级参考文献48

  • 1袁非牛,廖光煊,张永明,刘勇,于春雨,王进军,刘炳海.计算机视觉火灾探测中的特征提取[J].中国科学技术大学学报,2006,36(1):39-43. 被引量:52
  • 2Davis W, Notarianni K. NASA fire detection study [ A ]. In: Proceedings of Fire Research and Safety, 13th Joint Panel Meeting [C], Gaithersburg, MD,1997, 2:419-422.
  • 3Cleary T, Grosshandler W. Survey of Fire Detection Technologies and System in Evaluation/Certification Methodologies and Their Suitability for Aircraft Cargo Compartments [ R ]. NISTIR 6356, Gaithersburg, MD, USA: National Institute of Standards and Technology,1999.
  • 4Miller J C, Smith M L, McCauley M E. Crew Fatigue and Performance on US Coast guard Cutters [ R]. CG-D-10-99, Croton, CT, USA: United States Coast Guard Research and Development Center, 1999.
  • 5Mary W Green. Thee appropriate and effective use of security technologies in U. S. Schools. [ R]. NCJ -178265, Sandia, USA: Sandia National Laboratories, 1999.
  • 6Albers B W, Agrawal A K. Schlieren analysis of an oscillating gas-jet diffusion [J]. Combustion and Flame, 1999, 119(1): 84-94.
  • 7Chamberlin D S, Rose A. The First Symposium (International) on Combustion [ M]. Pittsburgh, USA: The Combustion Institute, 1965:27 - 32.
  • 8Haering N C, Qian R J, Sezan M I. A semantic event-detection approach and its application to detecting hunts in wildlife video [ J]. IEEE Transactions on Circle System Video Technology, 2000, 10(6) : 857 -868.
  • 9Javed O, Shah M. Tracking and object classification for automated surveillance [ A ]. In : Proceedings of the 7th European Conference on Computer Vision ( ECCV' 02) [ C], Berlin, Germany: Springer- Verlag, 2002:343 - 357.
  • 10Naphade M R, Kristjansson T, Frey B, et al. Probabilistic multimedia objects (multijects) : a novel approach to video indexing and retrieval in multimedia systems [ A ]. In: Proceedings of the IEEE International Conference on Image Processing (ICIP'98) [C ], Chicago, Illinois, UAS, 1998, 3:536-540.

共引文献25

同被引文献119

引证文献16

二级引证文献79

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部