期刊文献+

骨替代材料在口腔种植领域中的成骨效果 被引量:14

Effect of bone substitutes in oral implants on bone formation
在线阅读 下载PDF
导出
摘要 骨替代材料目前已成为拔牙位点保存术、牙槽嵴骨增量术和上颌窦底提升术的主要材料,而羟磷灰石、磷酸钙和生物活性玻璃以其良好的生物相容性、骨传导性、生物降解性、骨再生能力和骨结合率成为骨替代材料的代表。单一成分骨替代材料的诱导骨再生能力取决于材料本身的表面形貌、结构、成分、孔径和孔隙率。按不同比例复合的新型骨替代材料,可使原单一骨替代材料的性能得以互补。骨替代材料与血小板浓缩物的联合应用,可促进前成骨细胞的增殖与分化,激发成骨细胞的活动,促进血管新生,从而利于骨替代材料存活。骨替代材料与生长因子的联合应用,可获得不同程度骨结合和骨改建,增加材料的细胞黏附率,改善支架的力学性能,在骨愈合早期即能促进新骨形成。随着科技的进步,未来骨替代材料的成骨性能日臻完善,在口腔种植领域的应用前景将会更加广阔。 Bone graft substitutes are currently used in extraction site maintenance, alveolar ridge augmentation, and maxillary sinus floor augmentation. Hydroxylapatite, calcium phosphate, and bioactive glass are representative bone substitutes because of their biocompatibility, osteoconductibility, biodegradability, bone regeneration, and boneimplant contact ratios. The osteogenesis of bone substitutes depends on their morphology, structure, composition, pore size, and porosity. Combining two or more components in various proportions can produce new bone substitutes with excellent properties. For instance, the combined application of bone substitutes and platelet concentrates can promote the proliferation and differentiation of pre-osteoblasts and active osteoblasts, as well aspromote angiogenesis. In addition, bone substitutes combined with growth factors can promote new bone formation during early bone healing, acquire different levels of osseointegration and bone reconstruction, promote cell adhesion rate, and improve scaffold mechanics. Future studies should focus on optimizing the osteogenesis of bone substitutes and widening the applications of these substitutes in dental implantology.
出处 《国际口腔医学杂志》 CAS 北大核心 2016年第1期113-117,共5页 International Journal of Stomatology
基金 国家自然科学基金(81200809) 高等学校博士学科点专项科研基金(20120061110077) 吉林省科技发展计划项目(201305-22037JH)~~
关键词 口腔种植 骨替代材料 骨再生 骨结合 dental implants bone substitutes bone regeneration osseointegration
作者简介 王晓娜,硕士,Email:Tina90520@163.com 【通信作者】周延民,教授,博士,Email:zhouym@jlu.edu.cn
  • 相关文献

参考文献43

  • 1LeGeros RZ. Calcium phosphate-based osteoinduc-tive materials[J]. Chem Rev, 2008, 108(11):4742-4753.
  • 2Vayron R,Karasinski P, Mathieu V, et al. Variationof the ultrasonic response of a dental implant embe-dded in tricalcium silicate-based cement under cyclicloading[J]. J Biomech, 2013,46(6):1162-1168.
  • 3Jones JR. Review of bioactive glass: from hench tohybrids[J]. Acta Biomater, 2013, 9(1):4457-4486.
  • 4Del Fabbro M, Bortolin M, Taschieri S, et al. Effectof autologous growth factors in maxillary sinus au-gmentation: a systematic reviewfj]. Clin ImplantDent Relat Res, 2013,15(2):205-216.
  • 5Wallace SS, Tamow DP, Froum SJ, et al. Maxillarysinus elevation by lateral window approach: evolu-tion of technology and techniquefJ]. J Evid BasedDent Pract, 2012,12(3 Suppl):161-171.
  • 6Nkenke E, Stelzle F. Clinical outcomes of sinus flooraugmentation for implant placement using auto-genous bone or bone substitutes: a systematic review[J]. Clin Oral Implants Res, 2009, 20(Suppl 4):124-133.
  • 7Canullo L, Dellavia C, Heinemann F. Maxillarysinus floor augmentation using a nano-crystallinehydroxyapatite silica gel: case series and 3-monthpreliminary histological results [J]. Ann Anat, 2012,194(2):174-178.
  • 8Chandrashekar KT, Saxena C. Biograft-HT as a bonegraft material in the treatment of periodontal verticaldefects and its clinical and radiological evaluation:clinical study [J]. J Indian Soc Periodontol, 2009,13(3):138-144.
  • 9Yuan H, Fernandes H, Habibovic P, et al. Osteoindu-ctive ceramics as a synthetic alternative to autolo-gous bone grafting[J]. Proc Natl Acad Sci USA,2010,107(31):13614-13619.
  • 10Davison NL, Luo X, Schoenmaker T,et al. Sub-micron-scale surface architecture of tricalciumphosphate directs osteogenesis in vivo and in vivo [J].Eur Cell Mater, 2014, 27:281-297.

二级参考文献21

  • 1胡运生,范清宇,马保安,张殿忠,刘云燕.碱性成纤维生长因子和人重组骨形态发生蛋白2诱导分化兔骨髓间充质干细胞(英文)[J].中国临床康复,2006,10(1):163-165. 被引量:3
  • 2孔航,章燕,蒋欣泉,潘可风.兔骨髓基质细胞的体外成骨定向诱导培养[J].口腔颌面外科杂志,2006,16(1):11-15. 被引量:7
  • 3Bonassar I-d, Vacanti CA. Tissue engineering: The first decade and beyond[J]. J Cell Biochem Suppl, 1998, 30/3l:297-303.
  • 4Alam S, Ueki K, Marukawa K, et al. Expression of bone morpho- genetic protein 2 and fibroblast growth factor 2 during bone rege- neration using different implant materials as an onlay bone graft in rabbit mandibles[J]. Oral Surg Oral Med Oral Patbol Oral Ra- diol Endod, 2007, 103 (1) : 16-26.
  • 5Presta M, Dell' Era P, Mitola S, et al. Fibroblast growth factor/fi- broblast growth factor receptor system in angiogenesis[J]. Cytokine Growth Factor Rev, 2005, 16(2) : 159-178.
  • 6Tanaka E, Ishino Y, Sasaki A, et al. Fibroblast growth factor-2 augments recombinant human bone morphogenetic protein-2-in- duced osteoinductive activity[J]. Ann Biomed Eng, 2006, 34 (5): 717-725.
  • 7Ueda H, Hong L Yamamoto M, et al. Use of collagen sponge in- corporating transforming growth factor-betal to promote bone re- pair in skull defects in rabbits[J]. Biomaterials, 2002, 23 (4):1003- 1010.
  • 8Wang L, Huang Y, Pan K, et al. Osteogenic responses to different concentrations/ratios of BMP-2 and bFGF in bone formation[J]. Ann Biomed Eng, 2010, 38 (1) : 77-87.
  • 9Ruhe PQ, Kroese-Deutman HC, Wolke JG, et al. Bone inductiveproperties of rhBMP-2 loaded porous calcium phosphate cement implants in cranial defects in rabbits[J]. Biomaterials, 2004, 25 (11) : 2123-2132.
  • 10Simons M. Integrative signaling in angiogenesis[J]. Mol Cell Bio- chem, 2004, 264(1/2) : 99-102.

共引文献15

同被引文献112

引证文献14

二级引证文献56

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部