期刊文献+

基于压缩感知的信道互易性补偿方法 被引量:1

A Compensation Method for Channel Non-reciprocity Based on Compressive Sensing
在线阅读 下载PDF
导出
摘要 多输入多输出(MIMO)技术能够在不增加系统带宽的情况下,有效提高系统容量和传输可靠性,满足人们对于数据传输速率和可靠性的要求。时分双工(TDD)MIMO系统相对于频分双工(FDD)MIMO系统而言,一个主要的优势就是上下行信道的互易性。文中分析了信道时变对于TDD-MIMO-OFDM系统容量的影响,在此基础上,提出了一种基于压缩感知的信道互易性补偿方法。该方法主要利用信道的稀疏特性,运用压缩感知理论,通过改进的重构算法估计出信道特性,然后进行预测以补偿时变对信道互易性的影响。由仿真结果可看出,该方法可以有效地降低信道估计误差,补偿了由信道非互易性所产生的系统容量的降低,且复杂度较低。 Multiple-Input Multiple-Output (MIMO) is a kind of technology which can effectively improves the system capacity and transmission reliability without increasing the system bandwidth, satisfies the requirement of rate and reliability of transmission. Compared with the Frequency Division Duplex (FDD) MIMO systems, one of the main advantages of Time Division Duplex (TDD) M1MO sys- tems is the channel reciprocity. In this paper,the influence of channel non-reciprocity caused by time-variations on the capacity of MIMO systems is analyzed and a compensation method based on Compressive Sensing ( CS ) is proposed. Based on compressive sensing theory, the proposed method uses an improved reconstruction algorithm to estimate the channel response, and then prediction is made to compen- sate for channel non-reciprocity caused by time-varying. According to the simulation results, the proposed method can efficiently reduce the estimation error and remedy the system capacity with a low complexity.
作者 孙君 孙照伟
出处 《计算机技术与发展》 2015年第12期210-215,共6页 Computer Technology and Development
基金 国自基金国家重大科研仪器研制项目(61427801) 国家"863"高技术发展计划项目(2014AA01A705) 南京邮电大学项目(NY211033)
关键词 信道互易性 压缩感知 信道预测 系统容量 channel reciprocity compressive sensing channel prediction system capacity
作者简介 孙君(1980-),女,硕士研究生导师,研究方向为无线通信; 孙照伟(1991-),男,硕士研究生,研究方向为无线通信。
  • 相关文献

参考文献15

二级参考文献54

  • 1孙建成,张太镒,刘枫.一种新的快速衰落信道非线性预测算法[J].北京航空航天大学学报,2005,31(5):499-503. 被引量:4
  • 2焦现军,张磊,项海格.单载波频域均衡系统中的PN信道估计算法[J].北京大学学报(自然科学版),2007,43(1):103-108. 被引量:10
  • 3古井贞熙 朱家新 张国海 易武秀译.数字声音处理[M].北京:人民邮电出版社,1993..
  • 4Suykens J A K, Vandewalle J. Recurrent least squares support vector machines [J ]. IEEE Trans. on Circuits and Syst. I, 2000(47) : 1109 - 1114.
  • 5Baesens B, Viaene S. An empirical assessment of kernel type performance for least squares support vector machine classifiers[C]//4th Int. Conf. knowledge-Based Intelligent Engineering Systems and Allied Technologies. Brighton, UK, 2000:313-316.
  • 6Suykens J A K, Vandewalle J. Multi - class least squares support vector machines[C]//Int. Joint Conf. on Neural Networks ( IJCNN' 99). Washington I)C, 1999: 900 - 903.
  • 7Tung Sheng Yang, Duel Hallen A, Hallen H. Long range fading prediction to enable adaptive transmission at another carrier[C]//4th IEEE Workshop on Signal Processing Advanees in Wireless Communications. USA: North Carolina State University, 2003 : 195 - 199.
  • 8Gao X M, Tanskanen J M A, Ovaska S J. Comparison of linear and neural network - based power prediction schemes for mobile DS/CDMA systems[ C]//VTC' 96. Atlanta: IEEE press, 1996:61 - 65,.
  • 9Jakes W C. Microwave mobile communications[M]. Piscataway, NJ: IEEE Press, 1994.
  • 103GPP Rl-100d26. Channel reciprocity modeling and performance evaluation, 2010.

共引文献31

同被引文献6

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部