期刊文献+

一种稀疏增强的压缩感知MIMO-OFDM信道估计算法 被引量:10

A Sparsity Enhanced Channel Estimation Algorithm Based on Compressed Sensing in MIMO-OFDM Systems
在线阅读 下载PDF
导出
摘要 基于压缩感知(Compressed Sensing,CS)的信道估计可以达到减少导频的目的,但在频-时域信道矩阵到时延-多普勒域的稀疏变换中存在谱泄漏现象,影响了信道矩阵的稀疏性和估计的均方误差(MSE)性能。为此该文对信道的稀疏性进行研究,提出一种时域加窗的稀疏优化CS信道估计算法。通过对时域加窗,所提算法抑制了由离散截断导致的多普勒域泄漏,再据此设计出观测矩阵,以此方式增强信道在时延-多普勒域的稀疏性,并实现对稀疏的信道矩阵更为准确的重构,达到改善信道估计MSE性能的目的。仿真结果表明随信噪比的增大,加窗CS算法相比无窗CS算法有效改善了信道估计的性能。 Channel estimation which based on Compressed Sensing (CS) can achieve the purpose of reducing pilots, but in the transformation of channel matrix from frequency-time domain to delay-Doppler sparse domain exists spectral leakage phenomenon which affects the sparsity of the channel and the Mean Squared Error (MSE) performance of estimation. For this, this paper studies the sparsity of the channel and a compressed channel estimation algorithm which optimized the sparsity by time domain windowing is proposed. With time domain windowing, the proposed algorithm restrains the leakage of Doppler domain which is caused by discretization and truncation, then the measurement matrix is designed. By this method, the sparsity of the delay-Doppler domain channel is enhanced and the more accurate sparse channel matrix is reconstructed. The channel estimation performance is improved. Simulation results show that with the signal-to-noise ratio increasing, windowed CS algorithm improves effectively the performance of channel estimation compared with no windows CS algorithm.
出处 《电子与信息学报》 EI CSCD 北大核心 2013年第3期665-670,共6页 Journal of Electronics & Information Technology
基金 国家自然科学基金(51008143) 船舶工业基金(10J3.5.2) 江苏高校优势学科建设工程项目资助课题
关键词 信道估计 压缩感知 稀疏表示 加窗 Channel estimation Compressed Sensing (CS) Sparse representation Windowing
作者简介 解志斌:男,1981年生,博士,讲师,研究方向为信号处理、移动通信. 薛同思:男,1987年生,硕士生,研究方向为无线通信技术.通信作者:薛同思xuetongsi@163.com 田雨波:男,1971年生,博士,教授,主要研究方向为计算智能应用于电子学与电磁学问题.
  • 相关文献

参考文献13

  • 1Donoho D L. Compressed sensing [J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.
  • 2Xiao Xiao-chao, Zheng Bao-yu, and Wang Chen-hao. Compressed channel estimation based on optimized measurement matrix[C]. International Conference on Wireless Communication and Signal Processing (WCSP), Nanjing, 2011: 1-5.
  • 3Eiwen D, Taubock G, and Hlawatsch F. Compressive tracking of doubly selective channels in multicarrier systems based on sequential delay-doppler sparsity[C]. IEEE International Conference on Acoustics Speech and Signal Processing (ICASSP), Prague, 2011: 2928-2931.
  • 4Taubock G and Hlawatsch F. Compressive estimation of doubly selective channels in multicarrier systems: leakage effects and sparsity-enhancing processing[J]. IEEE Journal of Selected Topics in Signal Processing, 2010, 4(2): 255-271.
  • 5Eiwen D, Taubock G, and Hlawatsch F. Multichannel- compressive estimation of doubly selective channels in MIMO-OFDM systems: exploiting and enhancing joint sparsity[C]. IEEE International Conference on Acoustics Speech and Signal Processing (ICASSP), Dallas TX, 2010: 3082-3085.
  • 6Qi Chemhao and Wu Le-nan. Optimized pilot placement for sparse channel estimation in OFDM systems[J]. IEEE Signal Processing Letters, 2011, 18(12): 749-752.
  • 7唐恬,张治,张平.一种基于频域加窗的OFDM信道估计算法[J].电子与信息学报,2007,29(12):2930-2933. 被引量:8
  • 8Zhao Yu-ping and Huang Ai-ping. A novel channel estimation method for OFDM mobile communication systems based on pilot signals and transform-domain process[C]. IEEE 47th Vehicular Technology Conference, Phoenix, AZ, 1997, Vol 3: 2089-2093.
  • 9Scaglione A and Xiao Li. Compressed channel sensing: is the restricted isometry property the right metric[C]. 17th International Conference on Digital Signal Processing (DSP),Corfu, 2011: 1-8.
  • 10Duarte M F and Sarvotham S. Distributed compressed sensing of jointly sparse signals[C]. The Thirty-Ninth Asilomar Conference on Signals, Systems and Computers, Pacific Grove CA, 2005:1537-1541.

二级参考文献6

  • 1Zhao Yuping and Huang Aiping. A novel channel estimation method for OFDM mobile communication system based on pilot signals and transform domain processing. IEEE 47th VTC, Phoenix, 1997, Vol.3: 2089-2093.
  • 2Minn H and Bhargava V K. An investigation into time-domain approach for OFDM channel estimation. IEEE Trans. on Broadcasting, 2000, 46(4): 240-248.
  • 3Fukuhara H, Hao Yuan, and Takeuchi Y, et aL. A novel channel estimation method for OFDM transmission technique under fast time-variant fading channel. IEEE 57th VTC, Jeju, 2003, Vol.4: 2343-2347.
  • 4Pei Yun Tsai and Tzi Dar Chiueh. Frequency-domain interpolation-based channel estimation in pilot-aided OFDM systems. IEEE 59th VTC, Milan, 2004, Vol.1: 420-424.
  • 5Van de Beek J J, Edfors O, and Sandell M, et al.. On channel estimation in OFDM systems. IEEE 45th VTC, Chicago, 1995, Vol.2: 815-819.
  • 6Yang Baoguo, Cao Zhigang, and Letalef K B. Analysis of low-complexity windowed DFT-based MMSE channel estimator for OFDM systems. IEEE Trans. on Communications, 2001, 49(11): 1977-1987.

共引文献7

同被引文献124

  • 1王德胜,朱光喜,林宏志.MIMO-OFDM最优导频设置与优化的信道估计方法[J].通信学报,2005,26(1):34-39. 被引量:15
  • 2周鹏,赵春明,盛彬.MIMO-OFDM系统中基于导频辅助的信道估计[J].电子与信息学报,2007,29(1):133-137. 被引量:15
  • 3Elad M. Sparse and redundant representation modeling-whatnext?[J]. IEEE Signal Processing Letters, 2012, 19(12):922-928.
  • 4Candes E J, Eldar Y C, Needell D, et aL. Compressed sensingwith coherent and redundant dictionaries[J]‘ Applied andComputational Harmonic Analysis, 2011,31(1): 59-73.
  • 5Mallat S G and Zhang Z. Matching pursuits with time-frequency dictionaries[J]. IEEE Transactions on SignalProcessing, 1993, 41(12): 3397-3415.
  • 6Pati Y C, Rezaiifar R, and Krishnaprasad P S. Orthogonalmatching pursuit: recursive function approximation withapplications to wavelet decomposition[C]. The IEEETwenty-Seventh Asilomar Conference on Signals, Systemsand Computers, Pacific Grove, USA, 1993: 40-44.
  • 7Tropp J A and Gilbert A C. Signal recovery from randommeasurements via orthogonal matching pursuit [J]. IEEETransactions on Information Theory, 2007,53(12):4655-4666.
  • 8Needell D and Vershynin R. Uniform uncertainty principleand signal recovery via regularized orthogonal matchingpursuit [J]. Foundations of Computational Mathematics, 2009,9(3): 317-334.
  • 9Donoho D L, Tsaig Y, Drori I, et al. Sparse solution ofunderdetermined systems of linear equations by stagewiseorthogonal matching pursuit [J]. IEEE Transactions onInformation Theory, 2012,58(2): 1094-1121.
  • 10Needell D and TVopp J A. CoSaMP: iterative signal recoveryfrom incomplete and inaccurate samples[J]. Applied andComputational Harmonic Analysis, 2009, 26(3): 301-321.

引证文献10

二级引证文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部