期刊文献+

基于有向图分割的推荐算法 被引量:2

Recommendation Algorithm Based on the Partition of Directed Graph
在线阅读 下载PDF
导出
摘要 利用资源分配的原理提出一个基于有向图分割的推荐算法.通过二部图网络结构与资源分配方法的结合,建立了物品间关系的有向图,再利用非对称非负矩阵分解(Asymmetric Nonnegative Matrix Factorization,ANMF)分割此有向图,并将物品根据分割结果得出的物品间关联关系进行分类,并以此设置物品间的关联权重,最终实现对用户的Top-N物品推荐方案.实验结果表明,提出的算法提高了推荐准确率,并且能在一定程度上提高推荐多样性,降低推荐物品的流行性. By using the principle of resource allocation, we propose a recommendation algorithm which is based on the partition of directed graph. The items directed graph is established by combining with the bipartite graphs network structure and resource allocation method, and is partitioned by the method of Asymmetric Nonnegative Matrix Factorization. Then we classify items by the relationship between them, set connection weights between the items and implement a recommendation from the Top-N items to the user. Experimental results show that the proposed algorithm can improve the recommendation accuracy and the recommendation diversity, and reduce the popularity of recommendation to a certain extent.
出处 《计算机系统应用》 2015年第12期196-203,共8页 Computer Systems & Applications
关键词 推荐算法 有向图 ANMF 推荐权重 recommendation algorithm directed graph ANMF recommendation weight
  • 相关文献

参考文献17

  • 1HerLoc0ker L J, Konstan AJ, Riedl TJ. Empirical analysis of design choices in neighborhood-based collaborative filtering algorithms. Information Retrieval, 2002,5(4):287-310.
  • 2Sarwar B, Karypis G, Konstan J, et al. Item-based collaborative filtering recommendation algorithms. Proc. of the 10th International Conference on World Wide Web. New York: ACM Press, 2001: 285-295.
  • 3Chen YL, Cheng LC. A novel collaborative filtering approaach for recommending ranked items. Expert Systems with Applications, 2008,34(4):2396-2405.
  • 4Balabanovic M, Shoham Y. content-based collaborative recommendation. Communications of the ACM, 1997,40(3): 66-72.
  • 5Haveliwala TH. Topic-sensitive PageRank. Proc. of the Eleventh International World Wide Web Conference, 2002, 101 (3):494-502.
  • 6李芳,李永进.一种基于随机游走的多维数据推荐算法[J].计算机科学,2013,40(11):304-307. 被引量:3
  • 7Zhou T, Ren J, Medo M, et al. Bipartite network projection and personal Recommendation. Physical Review.E, 2007,76(4):046115.
  • 8Zhou T, Jiang LL, Su RQ, et al. Effect of initial configuration on network based recommendation. Europhysies Letters, 2008,81 (5):58004.
  • 9Zhou T, Su RQ, Liu RR, et al. Ultra accurate personal recommendation via eliminating redundant correlations. Physics, 2009,2(5):4127.
  • 10Daniel B, Michael J. Learning Collaborative Information Filters. Proceedings of the Fifteenth International Conference on Machine Learning, San Francisco: Morgan Kaufmann Publishers Inc press, 1998:46-54.

二级参考文献22

  • 1Adomavicius G, Tuzhilin A. Toward the next generation of re- commender systems: A survey of the state-of-the-art and possi- ble extensions[J]. IEEE Transactions on Knowledge and Data Engineering, 2005,17(6) : 734-749.
  • 2Steek H. Training and testing of recommender systems on data missing not at random[C]///Proceedings of the 16th ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, 2010 : 713-722.
  • 3Adomavieius G, Tuzhilin A, Zheng R. REQUEST: A query lan- guage for eustomizing recommendations[J]. Information Sys- tems Research, 2011,22 (1) : 99-117.
  • 4Wei K, Huang J, Fu S. A survey of e-commerce recommender systems[C]//2007 International Conference on Service Systems and Service Management. IEEE, 2007:1-5.
  • 5Wei S, Ye N, Zhang S, et al. Item-Based Collaborative Filtering Recommendation Algorithm Combining Item Category with In- terestingness Measure[C]//2012 International Conference on Computer Science Serviee System (CSSS). IEEE, 2012: 2038- 2041.
  • 6Ling G, Yang H, Lyu M R, et al. Response aware model-based collaborative filtering[R]. UAI-P-2012-PG-501-510. 2012.
  • 7Jamali M, Ester M. A matrix factorization technique with trust propagation for recommendation in social networks[C]///Pro- ceedings of the fourth ACM conference on recommender sys- tems. ACM, 2010:135-142.
  • 8Cremonesi P, Koren Y, Turrin tL Performance of recommender algorithms on top-n recommendation tasks[C]//Proceedings of the fourth ACM conference on recommender systems. ACM, 2010:39-46.
  • 9Lee C H. Mining spatio-temporal irfformation on microblogging streams using a density-based online clustering method[J]. Ex- pert Systems with Applications, 2012,39(10) : 9623-9641.
  • 10Ghazanfar M A, Prugel-Bermett A. A scalable, accurate hybrid recommender system[C] // Third International Conference on Knowledge Discovery and Data Mining, 2010, WKDD' 10. IEEE, 2010: 94-98.

共引文献2

同被引文献13

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部