期刊文献+

结合用户行为和物品标签的协同过滤推荐算法 被引量:11

COLLABORATIVE FILTERING RECOMMENDATION ALGORITHM COMBINING USER BEHAVIOR AND ITEM LABELS
在线阅读 下载PDF
导出
摘要 传统协同过滤算法在利用评分进行推荐时,面临物品冷启动及不能保证评分客观公正的问题,从而影响推荐的准确度。同时,推荐系统所需数据集中存在大量用户行为信息以及物品标签信息。为了解决以上问题,综合标签信息来提出一种结合用户行为和物品标签的协同过滤推荐算法。实现了不依赖用户对物品的评分,而基于物品标签概率进行有效推荐的研究目标。实验表明,该算法可以消除不客观公正评分的影响并能很好地解决物品冷启动问题,同时提高推荐准确度。 The traditional collaborative filtering algorithm is facing the problem of cold start of items and the failure to guarantee the objective and fair scores when using the scores for recommendation,thus affecting the accuracy of recommendation. At the same time,there is a large amount of user behavior information and item labels information in the recommended data set. In order to solve the above problems,a collaborative filtering recommendation algorithm combining user behavior and item labels was proposed. It realized the research goal of effective recommendation based on the probability of item labels without relying on user 's rating of the item. Experiments showed that the algorithm eliminated the impact of not objective and fair score and solved the problem of cold start of items well and improved the accuracy of recommendation.
作者 李龙生 艾均 苏湛 李妍妍 Li Longsheng;Ai Jun;Su Zhan;Li Yanyan(School of Optical-Electrical and Computer Engineering, University of Shanghai jbr Science and Technology, Shanghai 200093, China;School of Electronic Communication Engineering, Zhengzhou University of Aeronautics, Zhengzhou 450003, Henan, China)
出处 《计算机应用与软件》 北大核心 2018年第6期248-253,共6页 Computer Applications and Software
基金 上海市自然科学基金项目(14ZR1428800)
关键词 协同过滤 冷启动 用户行为 物品标签 Collaborative filtering Cold start User behavior Item labels
作者简介 李龙生,硕士生,主研领域:推荐系统,复杂网络。;艾均,讲师。;苏湛,讲师。;李妍妍,本科生。
  • 相关文献

参考文献3

二级参考文献129

  • 1[1]Billsus,D.,and Pazzani,M.J.Learning Collaborative Information Filters[M].In Proceedings of ICML' 98,1998.46-53.
  • 2[2]Breese,J.S.,Heckerman,D.,and Kadie,C.Empirical Analysis of Predictive Algorithms for Collaborative Filtering[M].In Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence,1998.43-52.
  • 3[3]G.-R.Xue,C.Lin,Q.Yang,W.Xi,H.-J.Zeng,Y.Yu,and Z.Chen.Scalable collaborative filtering using cluster-based smoothing[M].In Proceedings of the 2005 ACM SIGIR Conference,2005.114-121.
  • 4[4]Goldberg,D.,Nichols,D.,Oki,B.M.,and Terry,D.Using Collaborative Filtering to Weave an Information Tapestry[M].Communications of the ACM.December,1992.
  • 5[5]Herlocker,J.,Konstan,J.,Borchers,A.,and Riedl,J.An Algorithmic Framework for Performing Collaborative Filtering[M].In Proceedings of ACM SIGIR'99.ACM press,1999.
  • 6[6]Kohrs A.and Merialdo,B.Clustering for Collaborative Filtering Applications[M].In Proceedings of CIMCA'99.IOS Press,1999.
  • 7[7]Resnick,P.,Iacovou,N.,Suchak,M.,Bergstrom,P.,and Riedl,J.GroupLens:An Open Architecture for Collaborative Filtering of Netnews[M].In Proceedings of CSCW' 94,Chapel Hill,NC,1994.
  • 8[8]Sarwar,B.M.,Karypis,G.Konstan,J.A.,and Riedl,J.Item-based Collaborative Filtering Recommendation Algorithms[M].In:Proceedings of the 10th International World Wide Web Conference,2001.
  • 9[9]Soboroff,I.M.and Nicholas,C.Collaborative Filtering and the Generalized Vector Space Model[M].In Proceedings of the 23rd Annual International Conference on Research and Development in Information Retrieval,2000.
  • 10Berghel H. Cyberspace 2000: dealing with information overload[J]. Communications of the ACM. 1997, 40 (2):19 - 24.

共引文献13

同被引文献78

引证文献11

二级引证文献55

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部