期刊文献+

一种新的雾天图像显著性检测方法 被引量:2

A New Method of Salient Object Detection in Foggy Images
在线阅读 下载PDF
导出
摘要 针对雾天图像降质带来的目标显著性检测难题,提出一种基于区域协方差特征的雾中目标显著性检测方法。该方法针对雾天图像的特点,提取亮度、梯度、空间位置以及对比度等信息形成协方差特征描述矩阵,通过不同尺度的分块对比获得局部显著子图。再将得到的局部子图结合得到最终的雾天图像显著图。实验表明相对于其它方法,论文方法对于雾天图像目标显著性检测具有很好的适应性、可拓展性和准确性。 Aiming to saliency detection problem of degraded foggy images ,object saliency detection method of foggy images based on region covariance matrix is presented .In the method ,luminance ,gradient ,space and contrast information are extracted to form covariance feature description matrix according to characteristics of foggy images .Then local saliency sub-map is acquired by local contrast of different scale .Finally ,saliency map is combined with local saliency sub-map .Ex-periments show that compared with state-of-art methods ,the proposed method has better adaptability and accuracy to object saliency detection in foggy images .
机构地区 陆军军官学院
出处 《计算机与数字工程》 2015年第11期2029-2034,共6页 Computer & Digital Engineering
基金 安徽省自然科学基金项目(编号:1208085MF97)资助
关键词 雾天图像 区域协方差矩阵 目标显著性检测 foggy images region covariance matrix object saliency detection
作者简介 孙晓宁,男,硕士研究生,研究方向:图像目标显著性检测。 陆文骏,男,硕士,讲师,研究方向:图像目标显著性检测、图像质量评价。
  • 相关文献

参考文献14

  • 1Koch C, Ullman S. Shifts in selective visual attention: towards the underlying neural circuitry[J]. Human Neurbiology, 1985,4 : 219-227.
  • 2Borji A, Cheng M M, Jiang H Z, et al. Salient Object De- tection: A Survey[J2. IEEE Transactions on Pattern A- nalysis and Machine Intelligence(PAMI), 2014.
  • 3Accepted. He K M, Sun J, Zhon X O. Single image Haze removal using dark channel prior[C2//Proc of IEEE Conference on CompUter Vision and Pattern Recognition(CVPR). Washington DC, USA: IEEE,2009:1956 1963.
  • 4禹晶,李大鹏,廖庆敏.基于物理模型的快速单幅图像去雾方法[J].自动化学报,2011,37(2):143-149. 被引量:105
  • 5郭璠,蔡自兴,谢斌,唐琎.单幅图像自动去雾新算法[J].中国图象图形学报,2011,16(4):516-521. 被引量:23
  • 6Li C L, Lu W J, Xue S, et al. Research on quality im- provement of polarization imaging in foggy conditions [C3//Proc of the IEEE International Conference on In- telligent Data Engineering (IScIDE). Beijing, China: Springer, 2013 : 208-215.
  • 7Congli Li, Wenjun Ira, Song Xue, et al. Quality as- sessment of polarization analysis images in foggy condi- tionsEC//Proc of the IEEE International Conference on Image Processing (ICIP), Pairs France: IEEE, 2014:551-555.
  • 8Tuzel, O. , Porikli, F. , Meer, P. Region covariance: A fast descriptor for detection and classificationEC2// European Conference of Computer Vision (ECCV), Berlin, Germany: Springer, 2006 : 589 : 600.
  • 9FSerstner, W. , Moonen, B. A metric for covariance matrices(Tech. Rep. ). 1999, Department of Geodesy and Geoinformatics, Stuttgart University, Germany, 1999:113-128.
  • 10L. Itti, C. Koch, E. Niebur. A model of saliency- based visual attention for rapid scene analysis E J2. IEEE Transactions on Pattern Analysis and Machine Intelligence(PAMI), 1998,20 : 1254-1259.

二级参考文献31

  • 1Narasimhan S G, Nayar S K. Vision and the atmosphere. International Journal of Computer Vision, 2002, 48(3): 233-254.
  • 2Narasimhan S G, Nayar S K. Removing weather effects from monochrome images. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE, 2001. 186-193.
  • 3Narasimhan S G, Nayar S K. Contrast restoration of weather degraded images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(6): 713-724.
  • 4Scbechner Y Y, Narasimhan S G, Nayar S K. Instant dehazing of images using polarization. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE, 2001. 325-332.
  • 5Schechner Y Y, Narasimhan S G, Nayar S K. Polarization- based vision through haze. Applied Optics, 2003, 42(3): 511-525.
  • 6Namer E, Schechner Y Y. Advanced visibility improvement based on polarization filtered images. In: Proceedings of the Polarization Science and Remote Sensing II. San Diego, USA: SPIE, 2005. 36-45.
  • 7Shwartz S, Namer E, Schechner Y Y. Blind haze separation. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE, 2006. 1984-1991.
  • 8Oakley J P, Satherley B L. Improving image quality in poor visibility conditions using a physical model for contrast degradation. IEEE Transactions on Image Processing, 1998, 7(2): 167-179.
  • 9Tan K, Oakley P J. Physics-based approach to color image enhancement in po()r visibility conditions. Optical Society o[America, 2001. 18(10): 2460-2467.
  • 10Narasimhan S G, Nayar S K. Interactive (de) weathering of an image using physical models. In: Proceedings of the ICCV Workshop on Color and Photometric Methods in Computer Vision. Nice, France: IEEE, 2003. 1387-1394.

共引文献121

同被引文献16

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部