期刊文献+

作业型飞行机器人研究现状与展望 被引量:34

Survey on Aerial Manipulator Systems
原文传递
导出
摘要 作业型飞行机器人是指由飞行机器人(通常是旋翼飞行机器人)与作业装置(机械臂)共同组成的具有主动作业能力的一种新型机器人系统.由于主动作业装置与飞行机器人之间的紧密耦合,以及飞行机器人本身对外部干扰的敏感性,作业型飞行机器人系统的研究也面临着诸多难题,如:机械臂运动引起系统重心变化带来的建模与镇定问题,与外界持续接触作业时的安全协调控制问题,以及相应的运动学、动力学规划问题等等.本文将全面分析与总结近几年发表的资料与文献,对作业型飞行机器人系统及相应的动力学建模与耦合分析、自主控制等方面的主要研究成果进行综述,并对其中的关键问题与困难进行分析与展望. Aerial manipulator system (AMS) is a new type of robot system with active operating capability, which is composed of aerial robot (usually rotor flying robot, RFR) and the operating device (manipulator). However, there exist some challenging academic problems in AMS research due to the strong dynamics coupling between the manipulator and the RFR, and the sensitivity of the RFR to the external interference, such as the modeling and stabilization problem due to the center-of-gravity changing caused by the relative movement between the manipulator and the RFR, the coordinated control problem of the RFR and the manipulator, the steady control problem of the system when the arm contacting with the environment, as well as the kinematic and dynamic planning problems. This paper presents the review of achievements and progresses about the dynamic modeling, coupling analysis and autonomous control on the AMS according to the recently published literatures, and points out the critical problems in the research in detail and the key challenging problems and some future research directions.
出处 《机器人》 EI CSCD 北大核心 2015年第5期628-640,共13页 Robot
基金 国家自然科学基金青年基金项目(61305120) 国家自然科学基金面上项目(61473282) 辽宁省科学技术计划软科学研究计划项目(2013401032)
关键词 作业型飞行机器人 旋翼飞行机器人 系统建模 耦合分析 自主控制 aerial manipulator system rotor flying robot system modeling coupling analysis autonomous control
作者简介 杨斌(1977-),男,博士生,讲师.研究领域:操作型飞行机器人系统建模与控制. 通信作者:何玉庆,heyuqing@sia.cn何玉庆(1980-),男,博士,研究员.研究领域:系统估计与控制,特种机器人系统导航与控制. 韩建达(1968-),男,博士,研究员.研究领域:机器人学,非线性估计与控制,机电一体化系统.
  • 相关文献

参考文献70

  • 1Thomas J, Loianno G, Polin J, et al.Toward autonomous avianinspired grasping for micro aerial vehicles[J].Bioinspiration & Biomimetics, 2014, 9(2): No.025010.
  • 2Thomas J, Loianno G, Sreenath K, et al.Toward image based visual servoing for aerial grasping and perching[C]//IEEE International Conference on Robotics and Automation.Piscataway, USA: IEEE, 2014: 2113-2118.
  • 3Albers A, Trautmann S, Howard T, et al.Semi-autonomous flying robot for physical interaction with environment[C]//IEEE International Conference on Robotics, Automation and Mechatronics.Piscataway, USA: IEEE, 2010: 441-446.
  • 4Marconi L, Naldi R, Gentili L.Modelling and control of a flying robot interacting with the environment[J].Automatica, 2011, 47(12): 2571-2583.
  • 5Fumagalli M, Naldi R, Macchelli A, et al.Modeling and control of a flying robot for contact inspection[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems.Piscataway, USA: IEEE, 2012: 3532-3537.
  • 6Peschel J M.Towards physical object manipulation by small unmanned aerial systems[C]//IEEE International Conference on Safety, Security, and Rescue Robotics.Piscataway, USA: IEEE, 2012: 1-6.
  • 7Torre A, Mengoli D, Naldi R, et al.A prototype of aerial manipulator[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems.Piscataway, USA: IEEE, 2012: 2653-2654.
  • 8Scholten J L J, Fumagalli M, Stramigioli S, et al.Interaction control of an UAV endowed with a manipulator[C]//IEEE International Conference on Robotics and Automation.Piscataway, USA: IEEE, 2013: 4910-4915.
  • 9Fumagalli M, Naldi R, Macchelli A, et al.Developing an aerial manipulator prototype: Physical interaction with the environment[J].IEEE Robotics & Automation Magazine, 2014, 21(3): 41-50.
  • 10Forte F, Naldi R, Macchelli A, et al.On the control of an aerial manipulator interacting with the environment[C]//IEEE International Conference on Robotics and Automation.Piscataway, USA: IEEE, 2014: 4487-4492.

二级参考文献20

  • 1Altug E, Ostrowski J P, Taylor C J. Quadrotor control using dual camera visual feedback[C]//IEEE International Conference on Robotics and Automation. Piscataway, NJ, USA: IEEE, 2003: 4294-4299.
  • 2Valenti M, Bethke B, Fiore G, et al. Indoor multi-vehicle flight testbed for fault detection, isolation, and recovery[C]//Proceedings of the AIAA Guidance, Navigation and Control Conference and Exhibit. Reston, VA, USA: AIAA, 2006.
  • 3Bouabdallah S, Siegwart R. Full control of a quadrotor[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, NJ, USA: IEEE, 2007: 153- 158.
  • 4Pounds P, Mahony R, Corke E Modelling and control of a large quadrotor robot[J]. Control Engineering Practice, 2010, 18(7): 691-699.
  • 5Hoffmann G M, Huang H M, Waslander S L, et al. Precision flight control for a multi-vehicle quadrotor helicopter testbed[J]. Control Engineering Practice, 2011, 19(9): 1023-1036.
  • 6Alexis K, Nikolakopoulos G, Tzes A. Switching model predictive attitude control for a quadrotor helicopter subject to atmospheric disturbances[J]. Control Engineering Practice, 2011, 19(10): 1195-1207.
  • 7Mellinger D, Kumar V. Minimum snap trajectory generation and control for quadrotors[C]//IEEE International Conference on Robotics and Automation. Piscataway, NJ, USA: IEEE, 2011: 2520-2525.
  • 8Salih A L, Moghavvemi M, Mohamed H A E et al. Modelling and PID controller design for a quadrotor unmanned air vehicle[C]//IEEE International Conference on Automation, Quality and Testing, Robotics. Piscataway, NJ, USA: IEEE, 2010.
  • 9Bouabdallah S, Noth A, Siegwart R. PID vs LQ control techniques applied to an indoor micro quadrotor[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, NJ, USA: IEEE, 2004: 2451-2456.
  • 10Benallegue A, Mokhtari A, Fridman L. Feedback linearization and high order sliding mode observer for a quadrotor UAV[C]//International Workshop on Variable Structure Systems. Piscataway, NJ, USA: IEEE, 2006: 365-372.

共引文献45

同被引文献185

引证文献34

二级引证文献177

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部