期刊文献+

遗传算法在机械优化设计中的应用研究 被引量:20

Application and Research of Genetic Algorithm in Mechanical Optimization
在线阅读 下载PDF
导出
摘要 为了寻求更优更高效的现代机械优化设计方法,依据遗传算法的基本理论,提出了一种新型的智能优化方法.分析了遗传算法的基本原理、特点及运行步骤,并运用Matlab软件遗传算法工具箱进行求解,结合蜗轮齿圈体积优化机械设计实例对遗传算法和传统优化方法中的序列二次规划法进行对比,得出传统优化后体积是常规设计的75.28%,而采用遗传算法优化后体积仅为常规设计的65.53%.由此可得出遗传算法的优化结果较传统优化算法的优化结果更优,过程更高效的结论. In order to search for a more better and more efficient modem mechanical optimization design meth- od, a new intelligent optimization method based on the basic theory of genetic algorithm is proposed. The basic principle, characteristics and operation steps of genetic algorithm are analyzed and using the genetic algorithm tool- box of MATLAB software to solve, combined with the worm gear ring volume optimization mechanical design exam- ple of genetic algorithm and compared with the traditional optimization method of sequential quadratic programming method, it is concluded that the traditional optimized volume is 75.28% of the conventional design, and using ge- netic algorithm to optimize volume after only 65.53% of the conventional design. It is concluded that the optimiza- tion result of genetic algorithm is more obvious, the process is more efficient which is compared with traditional op- timization algorithm.
出处 《哈尔滨理工大学学报》 CAS 北大核心 2015年第4期46-50,共5页 Journal of Harbin University of Science and Technology
关键词 机械设计 遗传算法 MATLAB优化工具箱 蜗轮蜗杆 mechanical design genetic algorithm the Matlab optimization toolbox worm gear and worm
作者简介 孙全颖(1960-),男,教授,硕士研究生导师,E—mail:mmjz1314@126.com 王艺霖(1989-),女,硕士研究生; 杜须韦(1990-),女,硕士研究生.
  • 相关文献

参考文献14

二级参考文献94

共引文献537

同被引文献103

引证文献20

二级引证文献54

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部