期刊文献+

基于变参数随机共振和归一化变换的时变信号检测与恢复 被引量:10

Time-varying Signal Detection and Recovery Method Based on Varying Parameter Stochastic Resonance and Normalization Transformation
在线阅读 下载PDF
导出
摘要 非线性随机共振系统具有利用噪声增强微弱信号的能力,为强噪声背景下的信号检测开辟了新的途径。该文提出一种变参数随机共振(VPSR)模型,实现对非周期信号的有效检测、噪声去除和信号恢复。通过以恢复信号的拟合决定系数和互相关系数作为评判标准,研究分析了不同参数变化对系统输出的影响,分析结果表明该模型能有效地从噪声背景中恢复时变信号。该方法拓展了随机共振用于时变信号检测技术的领域,在时变信号检测和处理以及雷达通讯等方向有着一定的潜在应用价值。 The nonlinear stochastic resonance system has the ability to take advantage of background noise to enhance the weak signal among it. It provides the new approach to detect the weak signal embedded with heavy noise. This study proposes a new Varying Parameter Stochastic Resonance(VPSR) model. The model performs well in the detection of a time-varying signal with noise as well as the denoising and signal recovery. This study takes the determination coefficient and cross correlation coefficient as the criteria and analyzes the influence of different parameters variation on the system output. The simulation results indicate the model performs better in the time-varying signal recovery than the traditional one. The proposed method develops the area of time-varying signal detection with stochastic resonance which can be hoped to be widely used in the aperiodic signal processing, radar communication, etc. due to its superiority.
出处 《电子与信息学报》 EI CSCD 北大核心 2015年第9期2124-2131,共8页 Journal of Electronics & Information Technology
基金 国家自然科学基金(51475441 11274300)资助课题
关键词 信号处理 变参数随机共振 时变信号 微弱信号探测 信号恢复 Signal processing Varying Parameter Stochastic Resonance(VPSR) Time-varying signal Weak signal detection Signal recovery
作者简介 通信作者:张海滨zhbzhbyr@gmail.com张海滨:男,1989年生,博士生,研究方向为信号处理、随机共振. 何清波:男,1980年生,博士,副教授,研究方向为故障诊断与状态监测、随机共振、流形分析. 孔凡让:男,1951年生,博士,教授,研究方向为故障诊断、信号处理.
  • 相关文献

参考文献10

二级参考文献70

共引文献171

同被引文献59

引证文献10

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部