摘要
对称性在各类积分计算中可以起到简化的作用.定积分和重积分的相关性质结论比较完善,但曲线曲面积分的相应性质尚不完善.给出了积分区域具有对称性,被积函数具有奇偶性条件下,定积分、重积分、第二类曲线积分和第二类曲面积分的性质.同时,对比了各种积分此类性质的异同.并且通过实例说明了这类性质的应用方法及该方法的优越性.
Symmetry can simplify the calculationk in all kinds of integral. The related properties of definite integral, double integral conclusion is perfect, but the corresponding character of the curve surface integral is imperfect. Gave the properties of the definite integral, double integral, the second kind of curvilinear integral, the second category of of the surface integral, when Integral area with symmetry integrand with parity conditions. At the same time, compared the similarities and differences between various points this nature. And the example was given to illustrate the application of this nature and the superiority of the methnd.
出处
《高师理科学刊》
2015年第8期15-18,共4页
Journal of Science of Teachers'College and University
基金
2014年度辽宁省普通高等教育本科教学改革研究项目(UPRP20140581)
关键词
定积分
重积分
曲线积分
曲面积分
对称性
奇偶性
definite integral
multiple integral
curvilinear integral
surface integral
symmetry
parity
作者简介
张国林(1982-),男,辽宁沈阳人,讲师,硕士,从事概率论与数理统计研究.E-mail:guolin0929@163.com