期刊文献+

基于用户兴趣-标签的混合推荐方法研究 被引量:10

A Study of Mixed Recommendation Method Based on User Interest-tag
在线阅读 下载PDF
导出
摘要 传统推荐技术存在冷启动、稀疏性、推荐精度低等问题。其中,可以方便表达用户兴趣偏好的标签推荐存在噪声、一词多义等问题,稳定性较好的用户兴趣刚好可以解决这一问题。然而,在推荐技术领域内,将兴趣与标签相结合的推荐研究相对较少。本文提出基于兴趣-标签的推荐算法ITRA(Interest—Tag Recommendation Algorithm),通过定义计算用户兴趣权重值、用户兴趣相似度、用户候选兴趣集、推荐兴趣-标签集、项目推荐集,将该集合作为最终的推荐结果。最后,通过实验证明该算法可以有效的提高推荐结果的准确率。 Traditional recommendation technologies have many disadvantages, such as cold start, sparseness as well as low recommendation accuracy. Among these technologies, tag recommendation can express users' interests very well, however it still exists some problems such as noise interference and polysemy. In such situation, users' interests are more stable and can be used to solve the problems mentioned above. While only several studies have combined interest and tags in recommendation area. This paper put forward ITRA (Interest-Tag Recommendation Algorithm ) to deal with the condition. ITRA was able to calculate the weight of users' interests and the similarities between users' interests. On this basis, it could get the candidate set of user interest together with the recommendation set of interest-tag, and in the end recommended the items set to users. Finally, the experimental study can verify the improvement of recommendation accuracy by using this algorithm.
出处 《情报学报》 CSSCI 北大核心 2015年第5期466-470,共5页 Journal of the China Society for Scientific and Technical Information
基金 国家科技支撑计划(2013BAH13F01)
关键词 个性化推荐 用户兴趣 兴趣标签 电子商务 personalized recommendations, user interest, interest tag, e-commerce
作者简介 李兴华,男,1990年生,武汉理工大学电子商务研究生(1134099456@qq.com); 陈冬林,男,1970年生,博士生导师,主要研究方向:云计算、服务管理、商务智能; 杨爱民,男,1970年生,讲师,主要研究方向:智能推荐、企业资源计划(ERP)、企业间供应链集成.
  • 相关文献

参考文献22

  • 1Bobadilla J, Ortega F, Hernando A, et al. Recommender Systems Survey [ J ]. Knowledge-Based Systems, 2013 (46) :109-132.
  • 2杨兴耀,于炯,吐尔根.依布拉音,廖彬,钱育蓉.融合奇异性和扩散过程的协同过滤模型[J].软件学报,2013,24(8):1868-1884. 被引量:30
  • 3Walter Carrer-Neto,Marta Luisa Hern6ndez-Alcaraz. Social knowledge-based recommender system. Application to the movies domain [ J ]. Expert Systems with Applications, 2012 ( 39 ) : 10990-11000.
  • 4朱郁筱,吕琳媛.推荐系统评价指标综述[J].电子科技大学学报,2012,41(2):163-175. 被引量:255
  • 5Li Xin, Chert Hsinchun. Recommendation as link prediction in bipartite graphs: A graph kernel-based machine learning approach [ J]. Decision Support Systems, 2013 (54) :880-890.
  • 6Li D, Lv Q, Xie x, et al. Interest-based real-time content recommendation in online social communities [ J 1. Knowledge-Based Systems, 2012 ( 28 ) : 1-12.
  • 7Schall D. Who to follow recommendation in large-scale online development communities [ J ]. Information and Software Technology, 2014,56 ( 12 ) : 1543-1555.
  • 8Joel P Lucas,Nuno Luz. A hybrid recommendation approach for a tourism system [ J ]. Expert Systems with Applications, 2013(40) : 3532-3550.
  • 9Zhang Zi-Ke, Zhou Tao, Zhanga Yi-Cheng. Personalized recommendation via integrated diffusion on user item tag [J].Physica A ,2010(389) 179-186.
  • 10Zhang Z K,Zhou T,Zhang Y C. Personalized recommendation via integrated diffusion on user-item-tag tripartite graphs [ J ]. Physica A: Statistical Mechanics and its Applications ,2010, 389 ( 1 ) : 179-186.

二级参考文献139

  • 1贾平,代建华,潘云鹤,朱淼良.一种基于互信息增益率的新属性约简算法[J].浙江大学学报(工学版),2006,40(6):1041-1044. 被引量:29
  • 2曹红兵.搜索引擎的个性化检索研究[J].图书情报工作,2007,51(3):129-132. 被引量:16
  • 3Xu Yabo, Zhang Benyu, Chen Zheng, et al. Privacy-Enhancing Personalized Web Search[C]//Proc of WWW'07,2007: 591-600.
  • 4Sugiyama K, Hatano K, Yoshikawa M. Adaptive Web Search Based on User Profile Constructed Without Any Effort from Users[C]//Proc of WWW'07,2004 : 675-684.
  • 5Qiu Feng, Cho Junghoo. Automatic Identifieation of User Interest for Personalized Seareh [C]//Proe of WWW'06, 2006 : 727-736.
  • 6Chirita P A, Nejdl W, Paiu R, et al. Using ODP Metadata to Personalize Search[C]//Proc of the 28th Annual Int'l ACM SIGIR Conf on Research and Development in Information Retrieval, 2005: 178-185.
  • 7Liu Fang, Yu Clement, Meng Weiyi. Personalized Web Search by Mapping User Queries to Categories[C]//Proc of CIKM'02, 2002: 558-565.
  • 8Teevan J, Dumais S T, Horvitz E. Personalizing Search via Automated Analysis of Interests and Activities[C]//Proc of the 28th Annual Int'l ACM SIGIR Conf on Research and Development in Information Retrieval, 2005:449-456.
  • 9Shen Xuehua, Tan Bin, Zhai Chengxiang. Implicit User Modeling for Personalized Search[C]//Proc of the 14th ACM Int'l Conf on Information and Knowledge Management Archive, 2005 : 824-831.
  • 10Sieg A, Mobasher B, Burke R Web Search Personalization with Ontological User Profiles[C] //Proc of CIKM'07,2007 : 525-534.

共引文献307

同被引文献97

引证文献10

二级引证文献69

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部