期刊文献+

改进的几何活动轮廓演化及其在目标跟踪中的应用 被引量:2

Improved Evolution of Geodesic Active Contour and its Application to Target Tracking
在线阅读 下载PDF
导出
摘要 为提高几何活动轮廓分割算法的分割效率和准确性,设计了新的边缘检测与跟踪算法.首先采用矢量图像计算图像的梯度值,并设计能够自适应调整阈值的边缘指示函数,进而提出改进的变分水平集演化模型;然后设计基于该改进模型的边缘检测算法,并在无迹卡尔曼滤波器框架下设计了运动目标的跟踪算法.实验结果表明,文中算法不但显著地提高了轮廓演化模型的灵活性和收敛速度,而且对阴影、遮挡、目标形变和背景干扰等具有较好的鲁棒性. In order to improve the efficiency and accuracy of geometric active contour model-based segmentation algorithm, a novel edge detection and tracking algorithm is presented. Firstly, the gradient of an image is calculated according to vector image, and an edge indicator with adaptive threshold is proposed. Secondly, an improved evolution model using variational level set is put forward. Then, on the basis of this model, an improved edge detection algorithm is proposed, and a target tracking algorithm is designed in the framework of unscented Kalman filter. Experimental results demonstrate that the proposed algorithm not only increases the convergence rate and flexibility of active contour evolution model significantly but also possesses strong robustness to such interferences as shadow, occlusion, object deformation and background interference.
出处 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2015年第1期72-78,共7页 Journal of South China University of Technology(Natural Science Edition)
基金 福建省教育厅科研项目(JA14175)~~
关键词 几何活动轮廓 水平集方法 目标跟踪 无迹卡尔曼滤波器 geodesic active contour level set method target tracking unscented Kalman filter
作者简介 宋佳声(1976-),男,博士,集美大学讲师,主要从事图像处理与智能系统研究.E—mail:soongjs@gmail.com
  • 相关文献

参考文献15

  • 1Kass M,Witkin A,Terzopoulos D.Snakes:active contour models [J ].International Journal of Computer Version, 1988,1(4) :321-331.
  • 2Xu C, Prince J L.Snakes, shapes,and gradient vector flow [J].IEEE Transactions on hnage Processing, 1998,7 (3) : 359-369.
  • 3Li B,Acton S T.Active contour external force using vector field convolution fbr image segmentation [J ].IEEE Transactions on hnage Processing, 2007,16 (8) : 2096- 2106.
  • 4Caselles V,Catte F,Coll T,et al.A geometric model for active contours in image processing [J].Numerische Ma- thematik, 1993,66( 1 ): 1-31.
  • 5Caselles V, Kimmel R, Sapiro G.Geodesic active contours [J].Intemational Journal of Computer Vision. 1997,22 (1):61-79.
  • 6Sethian J A.Level sel methods and fas! marching methods [J ].Journal of Computing and Inlbnnation Technology, 2003,11(1 ):1-2.
  • 7Zhao H-K,Chan T,Mcrriman B et al.A variational level set approach to multiphase motion [J].Journal of Compu- tational Physics, 1996, 127( 1 ): 179-195.
  • 8Chan T F.Vese L A.Active contours without edges [J ]. IEEE Transactions on Image Processing,2001,10 (2): 266-277.
  • 9Peng D,Merriman B.Osher S,et al.A PDE-based fast local level set method [J].Journal of Computational Phy- sics, 1999,155(2):410-438.
  • 10Gomes J, Faugeras O.Reconciling distance functions and level sets [C]//Proceedings of the 5th IEEE EMBS Inter- national Summer School on Biomedical Imaging.Berder Island : IEEE, 2002 : 209-223.

二级参考文献17

  • 1张学文.组成论[M].合肥:中国科学技术大学出版社,2003-12:70~75
  • 2Wren C, Azarbayejani A, Darrell T, et al. Pfinder: real- time tracking of the human body [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997,19 (7) :780-785.
  • 3Stauffer C, Grimson W E L. Adaptive background mixture models for real-time tracking [ C ]//Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Fort Collins : IEEE, 1999:246-252.
  • 4Power P Wayne, Schoonees Johann A.Understanding back- ground mixture models for foreground segmentation [ C ]// Proceedings Image and Vision Computing. New Zealand: University of Auckland, 2002 : 267- 271.
  • 5KaewTraKulPong P, Bowden R. An improved adaptive background mixture model for real-time tracking with shadow detection [ C ] //Proceedings of the 2rid European Workshop on Advanced Video Based Surveillance Sys- tems. London : Kluwer Academic Publishers, 2001 : 1 -5.
  • 6Lee D. Effective Gaussian mixture learning for video back- ground subtraction [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2005,27 (5) :827- 832.
  • 7Zivkovic Z. Improved adaptive Gaussian mixture model for background subtraction [ C]//Proceedings of the 17th In- ternational Conference on Pattern Recognition. Cambridge: IEEE, 2004 : 28- 31.
  • 8Elgammal A, Duraiswami R, Harwood D, et al.Background and foreground modeling using nonparametric kernel den- sity estimation for visual surveillance [ C ]//Proceedings of the IEEE ,2002,90 (7) : 1151-1163.
  • 9Li Dawei, Xu Lihong, Goodman Erik. Online background learning for illumination-robust foreground detection [C]//Proceedings of the l lth International Conference on Control, Automation, Robotics and Vision. Singapore : IEEE ,2010 : 1093-1100.
  • 10Bouttefroy P L M, Bouzerdoum A, Phung S L, et al. On the analysis of background subtraction techniques using Gaussian mixture models [ C ]//Proceedings of the 35th International Conference on Acoustics, Speech, and Signal Processing. Dallas : IEEE ,2010:4025-4045.

共引文献3

同被引文献24

  • 1HO Y,LEE R.A Bayesian approach to problems in stochastic estimation and control[J].Automatic Control,IEEE Transactions on,1964,9(4):333-339.
  • 2KITAGAWA G.Non-Gaussian state-space modeling of nonstationary time series[J].Journal of the American Statistical Association,1987,82(400):1032-1041.
  • 3DOUCET A,GODSILL S,ANDRIEU C.On sequential Monte Carlo sampling methods for Bayesian filtering[J].Statistics and Computing,2000,10(3):197-208.
  • 4CRISAN D,DOUCET A.Convergence of sequential Monte Carlo methods[R].Cambridge:University of Cambridge,2000.
  • 5GORDON D,SMITH F M.Novel approach to nonlinear and non-Gaussian Bayesian state estimation[J].IEEE Proceedings-F,1993,140(2):107-113.
  • 6ISARD M A.Visual motion analysis by probabilistic propagation of conditional density[D].Oxford:University of Oxford,1998.
  • 7KUN W,LIU X P.Visual object tracking based on filtering methods[C]∥2011 IEEE Instrumentation and Measurement Technology Conference(I2MTC).Hangzhou,China:IEEE,2011:1-6.
  • 8LI C,XU C,GUI C,et al.Distance regularized level set evolution and its application to image segmentation[J].IEEE Transactions on Image Processing,2010,19(12):3243-3254.
  • 9COMANICIU D,RAMESH V,MEER P.Kernel-based object tracking[J].Pattern Analysis and Machine Intelligence,IEEE Transactions on,2003,25(5):564-577.
  • 10VALISKA J,MARCHEVSKY S,KOKOSKA R.Object tracking by color-based particle filter techniques in videosequences[C]∥Proceedings of 24th International Conference Radioelektronika.Bratislava,Slovak Republic:IEEE,2014:1-4.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部