期刊文献+

二维图形中轴的离散演化

Discrete medial axis evolution of 2D planar shape
在线阅读 下载PDF
导出
摘要 提出了一种基于反向离散轮廓演化的二维图像离散中轴演化。从一个复杂的轮廓简化后的形状开始,不断恢复该形状,从中构造出一系列层次化的中轴。与以往的中轴算法不同,离散中轴演化计算过程中,用户可以观察到一个物体轮廓及其中轴不断演化的形象过程,比一个没有任何反馈的程序更加方便易懂。由于离散轮廓演化是由一系列简单的点删除操作驱动,对应的中轴演化可以通过局部更新来完成。实验结果表明该方法具有较高的效率。 A discrete medial axis evolution of 2D planar shape is proposed along with the inverse discrete contour evolution.The hierarchy of medial axes of a planar shape is constructed from a most simplified shape,and gradually refined.Distinct from previ-ous medial axis algorithms,in every step during the medial axis evolution process,there is a valid polygon which is similar to the original contour to some extent,as well as its medial axis.It is convenient for the user to monitor a meaningful evolution process rather than a time-consuming program running without any feedback.Due to the discrete contour evolution is simply driven by re-cursive point deletion,the medial axis evolution could be accomplished by locally updating.It is shown in the experiments that the efficiency of the proposed method are improved.
出处 《中国科技论文》 CAS 北大核心 2014年第10期1149-1154,共6页 China Sciencepaper
关键词 计算几何 中轴 骨架 轮廓演化 computation geometry medial axis skeleton contour evolution
作者简介 侯季春(1989-),男,硕士研究生,主要研究方向为计算机图形学 通信联系人:刘水进,副教授,主要研究方向为计算几何、图形学和计算机辅助设计,liuyongjin@tsinghua.edu.cn
  • 相关文献

参考文献15

  • 1]31um H. A transformation for extracting new descrip- tors of shape [J]. Models for the Perception of Speech and Visual Form, 1967, 19(5) : 362-380.
  • 2Wolter F E. Cut locus : medial axis in global shape in terrogation and representation [R]. Cambridge, USA, Department o[ Ocean Engineering, Massachusetts Insti-tute of Technology, Design Laboratory Memorandum 92-2, 1993.
  • 3Sherhrooke E C, Patrikalakis N M, Wolter F E. Differ ential and topological properties of medial axis trans- forms [J]. Graphical Models and Image Processing, 1996, 58(6): 574-592.
  • 4Lee D T. Medial axis transformation of a planar shape [J]. IEEE Transactions on Pattern Analysis and Ma- chine Intelligence, 1982 (4): 363-369.
  • 5Srinivasan V, Nackman L R. Voronoi diagram for mul tiply-connected polygonal domains 1: algorithm [J]. IBM Journal of Research and Development, 1987, 31 (3): 361-372.
  • 6Chou J J. Voronoi diagrams for planar shapes [J]. IEEE Computer Graphics and Applications, 1995, 15 (2) : 52-59.
  • 7Ramanathan M, Gurumoorthy B. Constructing medial axis transform of planar domains with curved bounda ties [J]. Computer-Aided Design, 2003, 35 (7): 619-632.
  • 8Alt H, Sehwarzkopf O. The Voronoi diagram of curved objects [C]//llth ACM Annual Symposium on Compu- tational Geometry. Vancouver, Canada, 1995 : 89 97.
  • 9Kim D S, Hwang I K, Park B J. Representing the Voronoi diagram of a simple polygon using rational quadratic t:zier curves [J]. Computer-Aided Design, 1995, 27(8) : 605-614.
  • 10Kim D S, Kim D, Sugihara K. Voronoi diagram of a circle set from Voronoi diagram of a point set: II. Ge ometry [J]. Computer Aided Geometric Desfgn, 2001, 18(6) : 563-585.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部