期刊文献+

结合置信连接度的自适应模糊连接度的MRI图像中丘脑分割算法研究 被引量:1

Segmentation for thalamus and its substructures based on adaptive fuzzy connectedness combined with confidence connectedness
在线阅读 下载PDF
导出
摘要 目的立体定向神经外科手术中,丘脑及其子结构神经核团作为靶区,常被用于治疗癫痫和锥体外系疾病。利用计算机对丘脑神经核团进行分割,对于神经外科疾病的诊断与治疗具有重要的研究价值。为提高丘脑神经核团的分割精度,简化人工操作,减少人工干预,避免主观影响,本文提出一种结合置信连接度的自适应模糊连接度混合算法,用于分割丘脑结构。方法本文算法在基于模糊连接度的框架内增加图像梯度特征,采用自适应权重及自动选取感兴趣区域的方式,对10例人脑MRI图像数据的丘脑结构进行分割。结果实验结果与专家指导下的手工分割结果进行比较,并对两者之间的相似度进行量化比较。结果表明该算法在减少人工干预的同时保证了较高的准确率。结论结合置信连接度的自适应模糊连接度丘脑及其子结构分割算法在计算速度和精度上均优于传统模糊连接度算法。 Objective In stereotactic neurosurgeries ,the thalamus and its substructure nerve nuclei have been regarded as the target areas , which can be usually used to treat epilepsy and extrapyramidal diseases .The utilization of computers for the segmentation of thalamus nerve nuclei has significant value of research in the diagnosis and treatment of neurosurgical diseases . In this paper , an algorithm based on adaptive fuzzy connectedness combined with confidence connectedness is proposed to improve the accuracy of thalamus segmentation result , simplify manual operation , reduce human intervention and avoid subjective influence . Methods This method gains the image gradient feature in the original framework based on the theory of fuzzy connectedness .Adaptive weighting and the way of automatically selecting interested area can reduce manual intervention.The thalamus structures of 10 cases of human brain MRI image data are segmented .Results The experimental results are compared with the results of the manual segmentation guided by experts .The similarity degree of them is calculated for quantitative comparison .The accuracy of this algorithm is higher , with human intervention reduced .Conclusions The adaptive fuzzy connectedness combined with confidence connectedness algorithm is better than traditional theory of fuzzy connectedness in computation speed and accuracy .
出处 《北京生物医学工程》 2015年第3期244-250,共7页 Beijing Biomedical Engineering
基金 国家自然科学基金(81101107)资助
关键词 模糊连接度 置信连接度 图像分割 丘脑 fuzzy connectedness confidence connectedness segmentation thalamus
作者简介 通信作者:杨春兰,副教授。E—mail:clyang@bjut.edu.cn
  • 相关文献

参考文献16

  • 1崔高宇,张绍祥,刘正津,谭立文,邱明国,郭燕丽,李七渝,李恺,杨晓萍,陈现红.丘脑的薄层断面定位解剖和三维重建[J].第三军医大学学报,2003,25(7):579-582. 被引量:9
  • 2Amini L, Soltanian-Zadeh H, Lucas C, et al. Automatic segmentation of thalamus from brain MRI integrating fuzzy clustering and dynamic contours [ J ]. Biomedical Engineering, IEEE Transactions on,2004, 51 (5) : 800-811.
  • 3HeckenburgG, Xi Yongjian, Duan Ye, et al. Thalamus segmentation from MRI images by lagrangian surface flow [ J ]. Engineering in Medicine and Biology Society, 2005: 3039- 3042.
  • 4Duan Y, Heckenburg G, Yongjian Xi, et al. Thalamus segmentation from diffusion tensor magnetic resonance imaging [J].Engineering in Medicine and Biology Society, 2006:3628 -3631.
  • 5Rosenfeld A. Fuzzy digital topology[J].Information and Control, 1979, 40( 1 ) :76-87.
  • 6Udupa J K, Samarasekera S. Fuzzy connectedness and objeet definition: theory, algorithms, and applications in image segmentation [ J ]. Graphical Models and Image Processing, 1996, 58(3) : 246-261.
  • 7Harati V, Khayati R, Farzan A. Fully automated tumor segmentation based on improved fuzzy eonnectedness algorithm in brain MR images[J]. Biology and Medicine, 2011, 41: 483- 492.
  • 8刘耀辉,陈官发生,黄展鹏.基于MITK的CT序列图像模糊连接度分割算法研究[J].湘南学院学报,2011,32(2):38-40. 被引量:3
  • 9于龙,王乘,李利军,袁晓辉.一种改进的模糊连接度图像分割方法[J].微计算机信息,2007,23(27):273-275. 被引量:2
  • 10宋晓,程明,王博亮,黄绍辉,黄晓阳.置信连接的自动肝脏分割方法[J].计算机辅助设计与图形学学报,2012,24(9):1188-1192. 被引量:9

二级参考文献36

  • 1赵明昌,田捷,薛健,朱珣,何晖光,吕科.医学影像处理与分析开发包MITK的设计与实现[J].软件学报,2005,16(4):485-495. 被引量:41
  • 2陆剑锋,林海,潘志庚.自适应区域生长算法在医学图像分割中的应用[J].计算机辅助设计与图形学学报,2005,17(10):2168-2173. 被引量:72
  • 3王成儒,倪永婧.基于精度依据准则的图像分割算法评价[J].微计算机信息,2006,22(05S):248-249. 被引量:6
  • 4高宏建,吴水才,任新颖.基于MITK和最大熵方法对肝脏切片图像的分割[J].医疗卫生装备,2006,27(10):12-14. 被引量:4
  • 5J. K. Udupa, S. Samarasekera, Fuzzy connectedness and object definition: theory, algorithms, and applications in image segmentation [J], Graphical Models and Image Processing, 1996, (58): 246-261.
  • 6Y. Zhuge, J. K. Udupa, P. K. Saha, Vectorial scale-based fuzzy-connected image segmentation[J], Computer Vision and Image Understanding, 2006, ( 101 ): 177-193.
  • 7R. B. Dial, Shortest-Path Forest with Topological Ordering[J], Comm. ACM, 1969,(12): 632-633.
  • 8Suzuki K, Kohlbrenner R, Epstein M L, et al. Computer- aided measurement of liver volumes in CT by means of geodesic active contour segmentation coupled with level-set algorithms[J]. Medical Physics, 2010, 37(5) : 2159-2166.
  • 9Meinzer H P, Thorn M, Cdrdenas C E. Computerized planning of liver surgery-an overview[J].Computers & Graphics, 2002, 26(4): 569-576.
  • 10Lee C C, Chen S H, Chiang Y C. Classification of liver disease from CT images using a support vector machine[J]. Journal of Advanced Computational Intelligence and Intelligent Informatics, 2007, 11(4): 396-402.

共引文献24

同被引文献4

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部