期刊文献+

基于混合高斯模型和相似度的阈值分割 被引量:3

Threshold Segmentation Based on GMM Model and Similarity
在线阅读 下载PDF
导出
摘要 阈值分割法在图像分割中是一种最为简单和有效的方法,然而如何选取合适的阈值实现有效分割,目前还没有统一的方法。结合信息论与图像的空间信息,提出一种新的阈值优化算法。首先建立图像的混合高斯分布(GMM),然后利用强度的类不确定性和相似度函数特性定制出目标函数,优化出局部阈值,从而获得高效的分割效果。实验结果表明,与大津法(OSTU)相比,该算法能够成功分割出模糊的边界,并且能够将图像中的各个组织有效的分割出来。 Threshold segmentation method in image segmentation is one of the most simple and effective methods, but how to select appropriate thresh- old to achieve effective segmentation is still not unified method at present. Based on information theory and image space information, a new threshold op- timization algorithm is put forward. Firstly, image mixed Gaussian distribution (GMM) is established, and by using the intensity of the class uncertainty and similarity function characteristic custom out the target function, the local threshold value is optimized, so as to achieve efficient segmentation effect. The experimental results show that compared with the OSTU, the proposed algorithm can successfully segment fuzzy boundary and image of each effective organization segmentation out.
作者 郭红
出处 《电视技术》 北大核心 2013年第3期40-43,共4页 Video Engineering
基金 国家自然科学基金项目(61071196) 教育部新世纪优秀人才支持计划项目(NCET-10-0927) 信号与信息处理重庆市市级重点实验室建设项目(CSTC 2009CA2003) 重庆市自然科学基金项目(CSTC 2009BB2287 CSTC 2010BB2398 CSTC 2010BB2411)
关键词 阈值 混合高斯分布 类不确定性 相似度函数 目标函数 threshold GMM class uncertainty similarly function target function
作者简介 郭红(1984-),女,硕士生,主研图像处理。
  • 相关文献

参考文献4

二级参考文献38

  • 1赵明昌,田捷,薛健,朱珣,何晖光,吕科.医学影像处理与分析开发包MITK的设计与实现[J].软件学报,2005,16(4):485-495. 被引量:41
  • 2张云飞,张晔.利用二维熵自动确定图像分割的阈值[J].哈尔滨工程大学学报,2006,27(3):353-356. 被引量:21
  • 3高宏建,吴水才,任新颖.基于MITK和最大熵方法对肝脏切片图像的分割[J].医疗卫生装备,2006,27(10):12-14. 被引量:4
  • 4Wells W, Grimson W, Kikins R. Adaptive segmentation of MRI data [ J ]. IEEE Transactions on Medical Imaging, 1996,15 (4) :429 - 442.
  • 5Haas Christine, Ermert Helmut, Holt Stephan. Segmentation of 3D intravascular ultrasonic images based on a random field model[ J]. Ultrasound in Medicine & Biology ,2000,26 ( 2 ) :297 - 306.
  • 6Imielinska C, Metaxas D, Udupa J, et al. Hybrid segmentation of the visible human data[ C ]//Proceedings of the Third Visible Human Project Conference, Bethesda, MD, 5 Oct 2000.
  • 7Rosenfeld A. The Fuzzy Geometry of Image Subsets [ J ]. Pattern Recognition Letters, 1984,2 ( 5 ) : 311 - 317.
  • 8Udupa JK, Samarasekera S. Fuzzy Connectedness and Object Definition [J]. SPIE Proceedings Medical Imaging, volume 1995:2431:2 - 10.
  • 9Imielinska C, Downes M, Yuan W. Semi-automated color segmentation of anatomical tissue [ J ]. J. of CMIG. ,2000 ( 24 ) : 173 - 180.
  • 10Roth, Scott D. Ray Casting for Modeling Solids[ J]. Computer Graphics and Image Processing, 1982( 18 ) : 109 - 144.

共引文献35

同被引文献23

  • 1赵俊兰.地下管线探测综合模式的探讨[J].北方工业大学学报,2005,17(1):94-96. 被引量:10
  • 2蔡宽余,杨晓慧.城市地下管线信息管理系统的设计[J].上海地质,2005(2):37-40. 被引量:16
  • 3HERTZ L,SCHAFER R W. Muhilevel thresholding using edge matching [J]. Computer vision, graphics, and image processing, 1988,44 ( 3 ) :279-295.
  • 4KAPURJ N,SAHOO P K,WONG A K C. A new method for gray level picture thresholding using the entropy of the histogram [J]. Computer vision, graphics, and image pro- cessing,1985, 29 (3): 273-285.
  • 5HUANG D Y, WANG C H. Optimal muhi-level Ihreshol- ding using a two-stage Otsu optimization approach[J]. Pal- tern recognition letter,2009,30( 3 ) :275-284.
  • 6AKAY B. A study on particle swarm optimization and artifi- cial bee colony algorithms for multilevel thresholding [J]. Applied soft computing, 2013,13 ( 6 ) : 3066-3091.
  • 7SARKAR S,DAS S. Multilevel image thresholding based on 2D histogram and maximum tsallis entmpy-a differential e- volution approach [J]. 1gEE transactions on image process- ing,2013,22(12) :4788--4797.
  • 8BHANDAR1 A K, KUMAR A, SINGH G K. Modified arti- ficial bee colony based computationally effieient multilevel thresholding for satellite image segmentation using Kapur's, Otsu and Tsallis functions[J]. Expert systems with applications ,2015,42( 3 ) : 1573-1601.
  • 9JU Z W, CHEN J Z, ZHOU J L. Image segmentation based on edge detection using K-means and an improved ant colony optimization [C]//IEEE 2013 International Conference on Machine Learning and Cybernetics(ICMLC). [S. 1.]: IEEE,2013:297-303.
  • 10GAO H, KWONG S, YANG J, et al. Particle swarm opti-mization based on intermediate disturbance strategy algo- rithm and its application in multi-threshold image segmentation[J]. Information sciences,2013 (250) :82 - 112.

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部