期刊文献+

HVPL算法在双色水位计液位视觉检测中研究 被引量:5

Research for Visual Detection of Bicolor Water Level Gauge Based on HVPL
在线阅读 下载PDF
导出
摘要 为了快速准确获得工业锅炉汽包水位实时监测值,采用了基于FPGA的图像预处理和数字识别算法,包括双线性插值、最小的误分类误差阈值分割法、Do G滤波器(高斯差分滤波器)及缝隙码,并提出一种新算法—横竖端点寻线法(HVPL),对采集图像进行畸变校正、分割、提取及数字识别,从而实现了水位计图像数字化。实验结果表明,采用基于逻辑电路的快速算法实现对水位计图像的机器识别具有较好实时性、鲁棒性以及较高识别率。 To fast and accurately obtain the real-time monitoring value of steam drum water level for industrial boiler, image preprocessing and digital recognition algorithms based on FPGA are adopted, including bilinear interpolation, DoG (difference of Gaussian) filter, smallest misclassification error threshold method, crack chain codes and HVPL ( searching endpoints and intersection line segments by horizontal and vertical scanning) method for image correction, segmentation, extraction and digital identification, thus achieves the gauge image digitization Experiment results show that the fast algorithms realizing intelligent reading of image based on logic circuits have good real-time performance, robustness and higher recognition rate.
出处 《控制工程》 CSCD 北大核心 2015年第3期413-417,共5页 Control Engineering of China
基金 云南省中青年学术和技术带头人后备人才项目(2012HB011) 昆明理工大学学科方向建设项目(14078212)
关键词 双色水位计 FPGA DoG滤波器 缝隙码 HVPL Bicolor water level gauge FPGA DoG filter crack chain code HVPL
作者简介 孙斌(1990-),男,湖南常德人,研究生,主要研究方向为模式识别与嵌入式系统等。
  • 相关文献

参考文献11

  • 1Kunal J P, Chintan K M, Jayesh D C. Comparison of optimal edge detection algorithms for liquid level inspection in bottles [J]. Emerging Trends in Engineering and Technology, 2009, 45(11):447-452.
  • 2Gribbon, Bailey K T. A novel approach to real-time bilinear interpolation [J].Field Programmable Technology, 2004,30(28): 126-131.
  • 3Kittler J, IUingworth ,]. Threshold selection based on a simple image statistic [J]. Computer Vision, 1985,30(2): 125-147.
  • 4Yaji, Gautham S T. Study for the topographic representation method using Laplacian of Gaussian filtering [J]. Procedia Technology,2012,6: 475-484.
  • 5Assirati L, Da S. Performing edge detection by difference of Gaussians using q-Gaussian kernels[J]. Computer Science, 2013, 20(11 ):415-423.
  • 6Liu J, Li B, et al. Feature extraction using maximum variance sparse mapping[J]. Neural Computing & Applications,2012,21 (8): 1827-1833.
  • 7Shammi S, Mandeep S S, Miss P. Ellipse detection using freeman chain code[J]. International Journal of Advanced Research in Computer Seiance and Electronics Engineering, 2012,1(9):86-90.
  • 8Shih, Frank Y, Wong W T. A new singlepass algorithm for extracting the mid-crack codes of multiple regions [J]. Journal of Visual Communication and Image Representation, 1992 3(3 ):217-224.
  • 9Nipat T, Yingyos S. Improve template matching method in mobile augmented reality for thai alphabet learning [J]. International Journal of Smart Home, 2012, 6(3):25-32.
  • 10Zhang Z G, Wang C. The Rescareh of vehicle plate recognition technical based on BP neural network [C]. AASRI Pmeedia, 2012,1:74-81.

同被引文献58

引证文献5

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部