期刊文献+

温比对双向扩张孔射流气膜冷却效率的影响 被引量:7

Influence of temperature ratio on cooling efficiency of 3-in-1 hole injection film
在线阅读 下载PDF
导出
摘要 为了探讨冷热流体真实温比与小温比的气膜冷却特性差别,采用湍流模型及Fluent软件,对吹风比Br分别为0.5和2.0,温比Tr分别为1.1和2.0的双向扩张孔射流气膜的流场、温度场和冷却效率分布进行研究。结果表明:Br=0.5时,2种温比下的冷气扩散基本一致,径向平均冷却效率差别不大;Br=2.0时,Tr=2.0的冷气径向扩散优于Tr=1.1的,径向平均冷却效率较Tr=1.1时增幅13.4%-55.5%。 To explore the difference of film cooling characteristics between small temperature ratio and real temperature ratio of the coolant and gas, the flow field, temperature field and film cooling efficiency of 3-in-1 hole injection film were studied,on the basis of Fluent software, by using the realizable κ-ε model with temperature ratio of 1.1 and 2.0,the blowing ratio of 0.5 and 2.0. The results show that,at blowing ratio of 0.5,the diffusions of coolant with both temperature ratios are identical and the radial average cooling efficiency has little difference. At blowing ratio of 2.0,the coolant radial diffusion with temperature ra- tio of 2.0 is better than that with temperature ratio of 1.1. The radial average cooling efficiency with tem- perature ratio of 2.0 is about 13.4% to 55.5% higher.
出处 《热力发电》 北大核心 2015年第4期50-55,共6页 Thermal Power Generation
基金 国家自然科学基金项目(51306126)
关键词 气膜冷却 双向扩张孔 吹风比 温比 冷却效率 流场 温度场 径向扩散 film cooling, 3-in-1 hole, blowing ratio, temperature ratio, cooling efficiency, flow field, temperature field, radial diffusion
作者简介 李广超(1979-),男,博士,副教授,主要研究方向为燃气轮机气动热力学。E-mail:ligc706@163.com
  • 相关文献

参考文献15

  • 1Bunker R S.A review of shaped hole turbine film-cooling technology[J].ASME Journal of Heat Transfer,2005,127:441-453.
  • 2Saumweber C,Schulz A.Effect of geometry variations on the cooling performance of fan-shaped cooling holes[J].ASME Journal of Turbomachinery,2012,134:1200-1207.
  • 3Goldstein R J,Echert E R,Burggraf F.Effects of hole geometry and density on three-dimensional film cooling[J].Journal of Heat and Mass Transfer,1974,17:595-607.
  • 4Yuen C H N,Martinez-Botas R F.Film cooling characteristics of a single round hole at various streamwise angles in a crossflow:partⅠ-effectiveness[J].Journal of Heat and Mass Transfer,2003,46:221-235.
  • 5Walters D K,Leylek J H.A detailed analysis of film cooling physics:part I:streamwise injection with cylindrical holes[J].ASME Journal of Turbomachinery,2000,122:102-122.
  • 6McGovern K T,Leylek J H.A detailed analysis of film cooling physics:part II:compound-angle injection with cylindrical holes[J].ASME Journal of Turbomachinery,2000,122:113-121.
  • 7Walters D K,Leylek J H.A detailed analysis of film-cooling physics part Ⅲ:streamwise injection with shaped holes[J].ASME Journal of Turbomachinery,2000,122:122-132.
  • 8Brittingham R A,Leylek J H.A detailed analysis of film cooling physics:part IV-compound-angle injection with shaped holes[J].ASME Journal of Turbomachinery,2000,133:113-145.
  • 9Lim C H,Pullan G,Ireland P.Influence of film cooling hole angles and geometries on aerodynamic loss and net heat flux reduction[J].ASME Journal of Turbomachinery,2013,135:051019-05122.
  • 10Yu Y,Yen C H,Shih T I P.Film cooling effectiveness and heat transfer coefficient distributions around diffusion shaped holes[J].ASME Journal of Heat Transfer,2002,124:820-827.

同被引文献62

引证文献7

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部