期刊文献+

用Ekeland变分原理证明山路引理的一个注记

On the Proof of the Mountain Pass Theorem via Ekeland's Variational Principle
在线阅读 下载PDF
导出
摘要 用Ekeland变分原理证明了山路引理,补充完善了以往证明中缺失的一些重要环节和细节. In this paper, the mountain pass theorem is proved in detail by Ekeland's variational principle, in which some important missing details in previous studies are supplemented.
出处 《西南大学学报(自然科学版)》 CAS CSCD 北大核心 2014年第7期49-52,共4页 Journal of Southwest University(Natural Science Edition)
基金 四川省科技厅重点资助项目(2012JYZ010) 四川省教育厅重点资助项目(14ZA0274 12ZB349)
关键词 山路引理 EKELAND变分原理 PALAIS-SMALE条件 mountain pass theorem Ekeland's variational principle Palais-Smale condition
作者简介 饶若峰(1969-),男,江西抚州人,教授,硕士,主要从事偏微分方程存在性与稳定性研究.
  • 相关文献

参考文献2

二级参考文献10

  • 1CAFFARELLI L, KOHN R, NIRENBERG L. First Order Interpolation Inequality with Weights [J].Composition Math, 1984, 53(3): 259--275.
  • 2CATRINA F, WANG Z. On the Caffarelli-Kohn-Nirenberg Inequalities: Sharp Constants, Existence (and Nonexistence), and Symmetry of External Functions [J]. Comm Pure Appl Math, 2001, 54(2): 229--258.
  • 3CHOU K, CHU C. On the Best Constant for a Weighted Sobolev-Hardy Inequality [J]. London Math Soc, 1993, 48(1): 137--151.
  • 4LI S, ZOU W. Remarks on a Class of Elliptic Problems with Critical Exponents [J]. Nonlinear Anal, 1998, 32: 769--774.
  • 5SANG J. Multiplicity Results and Bifurcation for Nonlinear Elliptic Problems Involving Critical Sobolev Exponents [J]. Nonlinear Anal, 1994, 23: 1493--1498.
  • 6KAJIKIYA R. A Critical-Point Theorem Related to the Symmetric Mountain-Pass Lemma and Its Applications to Elliptic Equations[J].Funct Anal, 2005, 225: 352--370.
  • 7HE X M, ZOU W M. Infinitely Many Arbitrarily Small Solutions for Singular Elliptic Problems with Critical Sobolev- Hardy Exponents[J]. Proc Edinb Math Soe, 2009, 52. 97--108.
  • 8HUANG L, WU X P, TANG C L. Existence and Multiplicity of Solutions for Semilinear Elliptic Equations with Critical Weighted Hardy-Sobolev Exponents [J]. Nonlinear Anal, 2009, 71: 1916-- 1924.
  • 9林艳,唐春雷.一类p-Laplacian方程非平凡解的存在性(英文)[J].西南大学学报(自然科学版),2008,30(2):1-4. 被引量:10
  • 10Zhi-hui Chen, Yao-tian ShenDepartment of Applied Mathematics, South China University of Technology, Guangzhou 510640, China.On the Existence of Nontrivial Solutions of Quasi-asymptotically Linear Problem for the P-Laplacian[J].Acta Mathematicae Applicatae Sinica,2002,18(4):599-606. 被引量:3

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部