期刊文献+

一类带有凹凸非线性项的p-拉普拉斯方程一对正解的存在性 被引量:1

On Pairs of Positive Solutions for a Class of p-Laplacian Equation with Convex and Concave Nonlinearities
在线阅读 下载PDF
导出
摘要 研究了一类带有凹凸非线性项的超线性p-拉普拉斯方程,其中主要的困难是非线性项f(x,t)不满足著名的(AR)条件.利用临界点理论和欧拉变分原理证明了方程至少存在一对正解. In this paper ,we consider a class of superlinear p-Laplacian equations involving some convex and concave nonlinearities .The main difficulty here is that the nonlinearity f(x ,t) does not necessarily verify the well-known (AR) condition .Based on the knowledge of critical point theory and Ekeland variational principle ,a pair of positive solutions are obtained .
作者 高婷梅
出处 《西南师范大学学报(自然科学版)》 CAS 北大核心 2015年第4期21-26,共6页 Journal of Southwest China Normal University(Natural Science Edition)
关键词 正解 P-拉普拉斯方程 欧拉变分原理 positive solution p-Laplacian equations Ekeland variational principle
作者简介 高婷梅(1985-),女,陕西汉中人,助教,主要从事非线性泛函分析的研究.
  • 相关文献

参考文献10

  • 1AMBROSETTI A, GARCIA AZORERO J, PERAL I. Multiplicity Results for Some Nonlinear Elliptic Equations [J]. Journal of Functional Analysis, 1996, 137(1): 219--242.
  • 2GUO Zong-ming, ZHANG Zhi-tao. Wl'e Versus C1 Local Minimizers and Multiplicity Results for Quasilinear Elliptic E quations [J]. Journal of Mathematical Analysis and Applications, 2003, 286(1): 32--50.
  • 3AMBROSETTI A, BREZIS H, CERAMI G. Combined Effects of Concave and Convex Nonlinearities in Some Elliptic Problems [J]. Journal of Functional Analysis, 1994, 122(2) : 519--543.
  • 4PAPAGEORGIOU N S, ROCHA E M. Pairs of Positive Solutions for p Laplacian Equations with Sublinear and Super linear Nonlinearities Which do Not Satisfy the AR-Condition [J]. Nonlinear Analysis, 2009, 70(11): 3854--3863.
  • 5高婷梅,唐春雷.1类超线性p-拉普拉斯方程多解的存在性(英文)[J].西南大学学报(自然科学版),2011,33(6):141-145. 被引量:4
  • 6刘轼波,李树杰.一类超线性椭圆方程的无穷多解[J].数学学报(中文版),2003,46(4):625-630. 被引量:22
  • 7LI Gong-bao, YANG Cai-yun. The Existence of a Nontrivial Solution to a Nonlinear Elliptic Boundary Value Problem of p Laplacian Type Without the Ambrosetti-Rabinowitz Condition [J]. Nonlinear Analysis, 2010, 72(12): 4602--4613.
  • 8WANG Juan, TANG Chun-lei. Existence and Multiplicity of Solutions for a Class of Superlinear p-Laplacian Equations [J]. Bound ValueProbl, 2006, 12(1): 472.
  • 9VAZQUEZ J L. A Strong Maximum Principle for Some Quasilinear Elliptic Equations [J]. Applied Mathematics and Optimization, 1984, 12: 191-- 202.
  • 10EKELAND I. On the Variational Principle [J]. Journal of Mathematical Analysis and Applications, 1974, 47(2): 324--353.

二级参考文献12

  • 1Ambrosetti A., Rabinowitz P. H., Dual variational methods in critical point theory and applications, J. Funct.Anal.. 1973. 14: 349-381.
  • 2Zou W. M., Variant fountain theorems and their applications, Mannsc. Math.. 2001. 104: 343-358.
  • 3Li G. B., Zhou H. S., Asymptotically linear Dirichlet problem for the p-Laplacian, Nonl. Anal. TMA, 2001,45: 1043-1055.
  • 4Stuart C. A., Zhou H. S., A variational problem related to self-trapping of an electromagnetic field, Math.Methods in the Applied Sciences. 1996. 19: 1397-1407.
  • 5Jeanjean L., On the existence of bounded Palais-Smale sequences and application to a Landesman-Luer type problem set on RN, Proc. Roy. Soc. Edinburgh, 1999, 129A: 787-809.
  • 6Zhao J. F., Structure theory for Banach space, Wuhan: Wuhan Univ. Press. 1991 (in Chinese).
  • 7Bartsch T., Infinitely many solutions of a symmetric Dirichlet problem, Nonl. Anal. TMA,1993, 20: 1205-1216.
  • 8Willem M., Minmax theorems, Boston: Birkhaeuser. 1996.
  • 9Bartolo P., Benci V., Fortunato D., Abstract critical point theorems and applications to some nonlinear problems with strong resonance at infinity, Nonl. Anal. TMA. 1983. 7: 981-1012.
  • 10Yaag H., Fan X. L., Existence of infinitely many solutions of the p-Laplace equation with p-concave and convex nonlinearities, J. Lanzhou Univ. Nat. Sci., 1992, 35(2): 12-16 (in Chinese).

共引文献24

同被引文献12

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部