期刊文献+

黎曼流形上的核稀疏表示及折痕识别

Kernel Sparse Representation on Riemannian Manifold and its Application to Crease Recognition
在线阅读 下载PDF
导出
摘要 在毛杆折痕识别中,光照不均和边缘绒毛等干扰因素在一定程度上影响识别的准确性.为尽可能排除这些影响折痕识别的因素,将图像稀疏表示思想引入到折痕检测,提出了黎曼流形上的核稀疏表示方法进行目标识别.首先采用协方差矩阵描述子来表征图像,并利用Bregman散度作为黎曼流形上的距离度量,进而构造了流形上的核函数.然后通过核方法把样本数据映射到再生核希尔伯特空间,结合稀疏表示获取高维特征空间的核稀疏表示系数.最后建立了字典学习的数学模型,结合凸理论提出了字典学习的有效算法.实验结果表明了所提方法的有效性. In feather quill crease detection, the existences of uneven illumination and fluff usually influence the detection accuracy. Ai- ming at the detection difficult problem, the idea of image sparse representation is introduced into the field of crease recognition. A feather quill crease recognition method based on sparse representation on Riemannian manifold is proposed for target recognition. First- ly, covariance matrices are computed as the crease descriptors of feather quill, and Bregman divergence which is adopted to make the space meet the requirement of Riemannian manifold is used to measure the distance between the two samples, then kernel function on Riemannian manifold is constructed. Secondly, the sample datasets are mapped into the reproducing kernel Hilbert space by kernel method, and kernel sparse representation coefficient of high dimensional feature space is obtained based on sparse representation. Final- ly, a mathematical model of dictionary learning is constructed and an efficient algorithm is proposed for dictionary learning according to the convex theory. The simulated experimental results verify the effectiveness of the proposed method which achieves better per- formance compared with many popular recognition algorithms.
出处 《小型微型计算机系统》 CSCD 北大核心 2015年第4期886-890,共5页 Journal of Chinese Computer Systems
基金 广东省自然科学基金项目(S2013040014993)资助 广东省自然科学基金项目(S2012010010652)资助 广东省科技计划项目(2012B020314005)资助
关键词 羽毛杆折痕 稀疏表示 核方法 Bregman散度 feather quill crease sparse representation kernel method Bregman divergence
作者简介 岳洪伟,男,1979年生,博士,讲师,研究方向为图像处理、模式识别。E-mail:yuehongwei420@163.com金迎迎,女,1982年生,博士研究生,讲师,研究方向为微分拓扑学.
  • 相关文献

参考文献5

二级参考文献56

  • 1王科俊,侯本博.步态识别综述[J].中国图象图形学报,2007,12(7):1152-1160. 被引量:45
  • 2Deshpande S D, Er M H, Venkateswarlu R, et al. Maxmean and max-median filters for detection of small targets [J]. Proc. SPIE,1999 ,3809:74-83.
  • 3Li J C, Shen Z K, Lan T. Detection of spot target in infrared clutter with morphological filter [ J ]. IEEE Aerospace and Electronics, 1996,1 : 168-172.
  • 4Cao Y, Liu R M, Yang J. Small target detection using two- dimensional least mean sqnare (TDLMS) filter based on neighborhood analysis [ J ]. International Journal of Infrared and Millimeter Waves, 2008,29 ( 2 ) : 188-200.
  • 5Liu Z J, Chen C Y, Shen X B, et al. Detection of small objects in image data based on the nonlinear principal component analysis neural network [ J ]. Optical Engineering, 2005,44 ( 9 ) 093604 ( 1-9 ).
  • 6Cao Y, Liu R M, Yang J. Infrared Small Targets Detection Using PPCA [ J ]. International Journal of Infrared and Millimeter Waves, 2008,29 ( 4 ) : 385-395.
  • 7Plumbley M D, Abdallah S A, Blumensath T, et al. Musical audio analysis using sparse representations [ J ]. Proceedings in Computational Statistics ,2006,2 : 104-117.
  • 8Donoho D, Huo X. Uncertainty principles and ideal atomic decomposition [ J ]. IEEE Trans. on Information Theory, 2001,47 ( 7 ) :2845-2862.
  • 9Elad M, Aharon M. Image denoising via sparse and redundant representation over learned dictionaries [ J ]. IEEE Trans. on Image Processing,2006,15(12) :3736-3745.
  • 10Wright J, Yang A Y, Ganesh A, et al. Robust Face Recognition via Sparse Representation [ J ]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2009,31 ( 2 ) : 210- 227.

共引文献75

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部