期刊文献+

基于自适应稀疏表示的高光谱遥感图像分类 被引量:6

Hyperspectral remote sensing image classification based on adaptive sparse representation
在线阅读 下载PDF
导出
摘要 针对多数传统分类算法应用于高光谱分类都存在运算速度慢、精度比较低和难以收敛等问题,从稀疏表示基本理论出发建立了一个基于自适应稀疏表示的高光谱分类模型。利用训练样本构建字典,聚类每一步迭代所产生的余项,将聚类中心作为新的字典原子,然后将测试样本看成冗余字典中训练样本的线性组合,令字典能够更适应于样本的稀疏表示。利用华盛顿地区的HYDICE高光谱遥感数据进行试验,并且与主成分分析、线性鉴别分析、支持向量机、神经网络算法进行比较,结果表明,该算法的总体分类精度比其他算法提高了约12%,有效提高了高光谱影像的分类精度。 Some traditional algorithms applied in hyperspectral remote sensing image classification have some problems such as low computing rate, low accuracy and hard for convergence. According to sparse rep- resentation theory, a classification model based on adaptive sparse representation (ASP) is constructed. The algorithm collects a few training samples from a structured dictionary, clusters the error vectors of each step, and signs the cluster center as new atoms making the dictionary. Then the testing samples are regar- ded as a linear combination of a few training samples of the structured dictionary so as to make the dictionary more suitable for a spare representation of samples. The ASP model is applied to the hyperspectral image of the Washington captured by an HYDICE sensor, and the experimental results show that it has more advan- tages in the classification in contrast with principal component analysis classifier, linear discriminant analysis classifier, neural network classifier and support vector machine classifier. The overall accuracy of the pro- posed algorithm is improved by 12 % as compared with other methods, which demonstrates the effectiveness of ASP.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2013年第9期1994-1998,共5页 Systems Engineering and Electronics
基金 国家自然科学基金(61101168)资助课题
关键词 图像处理 高光谱遥感 自适应稀疏表示 分类 image processing hyperspectral remote sensing adaptive sparse representation classification
作者简介 何同弟(1971-),男,博士研究生,主要研究方向为模式识别与图像处理.E-mail:hetongdi@126.com| 李见为(1947-),通讯作者,男,教授,博士研究生导师,主要研究方向为模式识别与图像处理.E-mail:jwli@cqu.edu.cn
  • 相关文献

参考文献17

  • 1杨哲海,张俊,李之歆.低通滤波器在高光谱影像分类中的应用[J].海洋测绘,2011,31(5):44-47. 被引量:3
  • 2冯静,舒宁.改进型遗传算法和支持向量机的波段选择研究[J].武汉理工大学学报,2009,31(18):120-123. 被引量:3
  • 3Turk M,Pentland A.Eigenfaces for recognition[J].Journal of Cognitive Neuroscience,1991,31(11):71-86.
  • 4Belhumeur P N,Hespanha J P,Kriegman D J.Recognition using class specific linear projection[J].IEEE Trans.on Pattern Analysis and Machine Intelligence,1997,19(7):711-720.
  • 5Tenenbaum J B,Silva V,Langford J C.A global geometric framework for nonlinear dimensionality reduction[J].Science,2000,290(5500):2319-2323.
  • 6Roweis S T,Saul L K.Nonlinear dimensionality reduction by locally linear embedding[J].Science,2000,290(5500):2323-2326.
  • 7Belkin M,Niyogi P.Laplacian eigenmaps for dimensionality reduction and data representation[J].Neural Computation,2003,15(6):1373-1396.
  • 8王立志,黄鸿,冯海亮.多线性局部与全局保持嵌入在高光谱遥感影像分类中的应用[J].计算机辅助设计与图形学学报,2012,24(6):780-786. 被引量:7
  • 9Mairal J,Bach F,Ponce J.Online learning for matrix factorization and sparse coding[J].Journal of Machine Learning Research,2010,11(1):19-60.
  • 10Mallat S,Zhang Z.Matching pursuits with time-frequency dictionaries[J].IEEE Trans.on Signal Processing,1993,41(12):3397-3415.

二级参考文献49

  • 1张士峰.混合正态分布参数极大似然估计的EM算法[J].飞行器测控学报,2004,23(4):47-52. 被引量:19
  • 2Vapnik V N. The Nature of Statistical Learning Theory[ M], NY: Springer-Verlag, 1995.
  • 3CANDES E J.Compressive sampling[C]//Proceedings of International Congress of Mathematicians.Madrid,Spain.European Mathematical Society Publishing House,2006:1433-1452.
  • 4BARANIUK R.Compressive sensing[J].IEEE Signal Processing Magazine,2007,24(4).118-120.
  • 5MAIRAL J,ELAD M,SAPIRO G.Sparse representation for color image restoration[J].IEEE Transactions on Image Processing,2008.17(1),53-69.
  • 6AHARON M,ELAD M,BRUCKSTEIN A.K-SVD:an algorithm for designing overcomplete dictionaries for sparse representation[J].IEEE Transactions on Signal Processing,2006,54(11):4311-4322.
  • 7HE Z,CICHOCKI A.K-EVD clustering and its applications to sparse component analysis[C].Independent Component Analysis and Blind Signal Separation,Charleston,SC,USA.LNCS,2006,3889:90-97.
  • 8XIE Z,FENG J.KFCE:a dictionary generation algorithm for sparse representation[J].Signat Processing,2009,89 (10):2072-2077.
  • 9TROPP J A,GIBERT A C.Signal recovery from random measurements via orthogonal matching pursuit[J].IEEE Transactions on Information Theory,2007,53 (12):4655-4666.
  • 10KUNIS S,RAUHUT H.Random sampling of sparse trigonometric polynomials,II.Orthogonal matching pursuit versus basis pursuit[J].Foundations of Computational Mathematics,2008,8(6),737-763.

共引文献68

同被引文献56

  • 1杜培军,林卉,孙敦新.基于支持向量机的高光谱遥感分类进展[J].测绘通报,2006(12):37-40. 被引量:34
  • 2Roggemann M C, Reynolds W R. Block-matching algorithm for mitigating aliasing effects in undersampled image sequences[J]. Optical Engineering, 2002, 41 (2) : 359 - 369.
  • 3Faramarzi E, Rajan D, Christensen M P. Unified blind method for multi image super-resolution and single/multi-image blur de- convolution[J]. 1EEE Trans. on linage Processing, 2013,22(6) 2101 - 2114.
  • 4Fang L, Au O C, Tang K, et al. Antialiasing filter design for subpixel downsampling via frequency domain analysis[J]. IEEE Trans. on Image Processing, 2012, 21(3) : 1391-1405.
  • 5Fang L, Au O C, Cheung N M, et al. Luma-Chroma space filter de- sign for sub-pixel-based monochrome image downsampling[J]. IEEE Trans. on Image Processing, 2013, 22(10) : 3818 - 3829.
  • 6Young S S. Alias-free image subsampling using Fourier-based windo- wing methods [J]. Optical Engineering, 2004, 43(4): 843-855.
  • 7Li X, Orchard M T. New edge-directed interpolation[J]. IEEE Trans. on Image Processing, 2001,10(10) : 1521 - 1527.
  • 8Zhang L, Wu X. An edge-guided image interpolation algorithm via directional filtering and data fusion[J]. IEEE Trans. on Im age Processing, 2006, 15(8): 2226-2238.
  • 9Zhang X, Wu X. Image interpolation by adaptive 2-D autore-gressive modeling and soft-decision estimation[J]. IEEE Trans. on Image Processing, 2008,17 (6) : 887 - 896.
  • 10Chen Y X, Luo Y P, Hu D C. Image supcrresolution using raetal coding[J]. Optical Engineering, 2008,47 ( 1 ) : 017007.

引证文献6

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部