期刊文献+

紧黎曼流形上的椭圆边界值问题 被引量:1

Elliptic Boundary Value Problems on Compact Manifolds
在线阅读 下载PDF
导出
摘要 讨论一类非齐次非线性椭圆边界值问题.利用极大值原理证明了该问题解的梯度估计.作为它的应用得到了解的效率比估计. A class of inhomogeneous nonlinear elliptic boundary value problem is discussed on compact manifolds with a smooth boundary.The maximum principles are used to obtain the gradient estimates for the solution of the problem.As its application,we obtain the efficiency ratio estimate of the solution.
作者 黄琴 阮其华
出处 《数学物理学报(A辑)》 CSCD 北大核心 2015年第1期43-49,共7页 Acta Mathematica Scientia
基金 福建省自然科学基金(2012J01015) 福建省留学基金资助
关键词 梯度估计 极大值原理 椭圆型方程 Gradient estimate Maximum principle Elliptic equation
作者简介 E—mail:qinhuang78@163.com; E-mail:ruanqihua@163.com
  • 相关文献

参考文献1

二级参考文献12

  • 1Qian Z M. A comparison theorem for an elliptic operator. Potential Analysis, 1998, 8:137-142.
  • 2Ruan Q H. Elliptic-type gradient estimate for Schrodinger equations on noncompact manifolds. Bull Lond Math Soc, 2007, 39(6): 982-988.
  • 3Shi W X. Deforming the metric on complete Riemannian manifolds. J Diff Geom, 1989, 30(1): 223-301.
  • 4Soupier P, Zhang Q S. Sharp gradient estimate and Yau's liouville theorem theorem for the heat equation on noncompact manifolds. Bull London Math Soc, 2006, 38:1045-1053.
  • 5Bakry D. On Sobolev and logarithmic Sobolev inequalities for Markov semigroups//Elworthy K D, Kusuoka S, Shige Kawa, eds. New Trends in Stochastic Analysis. Singapore: World Sci Publ River Edge, 1997: 43-75.
  • 6Bakry D, Qian Z M. Volume comparison theorems without Jacobi fields//Current Trends in Potential Theory. Bucharest: Theta, 2005:115-122.
  • 7Hamiltom R S. A matrix harnack estimate for the heat equation. Comm Anal Geom, 1993, 1:113-126.
  • 8Karp L, Li P. The heat equation on complete Riemannian manifolds. 1982, Unpublished.
  • 9Kotschwar B L. Hamiton's gradient estimate for the heat kernel on complete manifolds. Proc Amer Math Soc, 2007, 135(9): 3013-3019.
  • 10Li P, Yau S T. On the parabolic kernel of the Schrodinger operator. Acta Math, 1986 156:153-201.

同被引文献7

  • 1DONNELLY H.Negative curvature and embedded eigenvalues[J].Math Z,1990,203:301-308.
  • 2ESCOBAR E.On the spectrum of the Laplacian on complete Riemannian manifolds[J].Commun Partial Differ Equations,1985,11:63-85.
  • 3DONNELLY H,GAROFALO N.Riemannian manifolds whose Laplacians have purely continuous spectrum[J].Mathematische Annalen,1992,293:143-161.
  • 4HUANG Qin,RUAN Qihua.Applications of some elliptic equations in Riemannian manifolds[J].Journal of Mathematical Analysis and Applications,2014,409(1):189-196.
  • 5CHEEGER J,GROMOV M,TAYLOR M.Finite propagation speed,kernel estimates for functions of the laplace operator and the geometry of complete Riemannian manifolds[J].Journal of Differential Geometry,1982,17:84-91.
  • 6CHAVEL I.Eigenvalues in Riemannian geometry[M].New York:Academic Press,1984.
  • 7王伟华,阮其华.一类广义解析函数的刘维尔性质[J].莆田学院学报,2012,19(5):5-7. 被引量:5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部